Journal of Statistical Physics

, Volume 13, Issue 1, pp 1–16 | Cite as

Stability and entropy production in electrical circuits

  • R. Landauer
Articles

Abstract

A number of the theorems expounded by Prigogine, Glansdorff and their collaborators are translated into electrical circuit terminology and their validity and significance discussed. The simultaneous occurrence of inductors and capacitors represents a situation not envisioned in the chemically oriented discussions and imposes some limitations. The electrical terminology also leads to “dual” theorems, in which voltage sources are replaced by current sources. The validity of the theorems in situations in which fluctuations are critical to the relaxation behavior is analyzed. The “excess entropy production” theorem is only valid if the circuit relaxation can be described by single-valued macroscopic variables, but not if it must be described by distribution functions. We stress that no purely local characterization, which examines a multistable system only in the neighborhoods where it occurs with high probability, can predict or characterize the steady state.

Key words

Electrical circuit entropy production stability bistability fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Prigogine, G. Nicolis, and A. Babloyantz,Phys. Today 25(11):23 (1972).Google Scholar
  2. 2.
    K. J. McNeil and D. F. Walls,J. Stat. Phys. 10:439 (1974).Google Scholar
  3. 3.
    R. Landauer,J. Appl. Phys. 33:2209 (1962).Google Scholar
  4. 4.
    R. Landauer,J. Stat. Phys. 9:351 (1973);11:525 (1974).Google Scholar
  5. 5.
    F. Schlögl,Z. Physik 191:81 (1966).Google Scholar
  6. 6.
    F. Schiögl,Z. Physik 243:303 (1971).Google Scholar
  7. 7.
    F. Schlögl,Z. Physik 248:446 (1971).Google Scholar
  8. 8.
    R. Landauer,IBM J. Res. Develop. 1:223 (1957).Google Scholar
  9. 9.
    H. Busch,Stabilität, Labilität, und Pendelungen in der Elektrotechnik, S. Hirzel, Leipzig (1913).Google Scholar
  10. 10.
    P. Glansdorff and I. Prigogine,Thermodynamic Theory of Structure Stability and Fluctuations, Wiley-Interscience, New York (1971).Google Scholar
  11. 11.
    J. M. Ziman,Can. J. Phys. 34:1256 (1956).Google Scholar
  12. 12.
    J. B. Keller,J. Math. Phys. 11:2919 (1970).Google Scholar
  13. 13.
    J. H. Jeans,The Mathematical Theory of Electricity and Magnetism, 5th ed., Cambridge (1951).Google Scholar
  14. 14.
    R. Landauer, Inadequacy of entropy and entropy derivatives in characterizing the steady state,Phys. Rev. A, to be published.Google Scholar
  15. 15.
    S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1961), p. 45.Google Scholar
  16. 16.
    G. Nicolis, inAdvances in Chemical Physics, Vol XIX, I. Prigogine and S. Rice, eds., Wiley-Interscience, New York (1971).Google Scholar
  17. 17.
    I. Prigogine,Introduction to Thermodynamics of Irreversible Processes, 3rd ed., Wiley-Interscience, New York (1967), Chapter VI.Google Scholar
  18. 18.
    R. Landauer and J. W. F. Woo,Comm. Solid State Phys. 4:139 (1972).Google Scholar
  19. 19.
    J. W. F. Woo and R. Landauer,IEEE J. Quantum Electron. QE-7:435 (1971).Google Scholar
  20. 20.
    H. K. Janssen,Z. Physik 270:67 (1974).Google Scholar
  21. 21.
    I. Matheson, D. F. Walls, and C. W. Gardiner,J. Stat. Phys. 12:21 (1975).Google Scholar
  22. 22.
    H. Haken,Phys. Lett. 46A:443 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • R. Landauer
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown Heights

Personalised recommendations