Advertisement

Journal of Statistical Physics

, Volume 19, Issue 2, pp 109–127 | Cite as

A unified approach for deriving kinetic equations in nonequilibrium statistical mechanics. II. Approximate results

  • J. L. del Rio
  • L. S. García-Colín
Articles

Abstract

The exact form for the kinetic equation derived by Mori, Fujisaka, and Shigematsu (MFS) is used to obtain several approximations better suited to be compared with macroscopic transport equations. Three approximations are discussed, namely, those known as the diagonal, the slow process, and the Markovian. The corresponding results are emphasized and their relationship is established. In particular, the Kramers-Moyal expansion for the Markovian kinetic equation is obtained from a microscopic basis.

Key words

Kinetic equation diagonal, slow process, and Markovian approximations slowness parameter Kramers-Moyal expansion mode-mode coupling Fokker-Planck equation derivative moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Garda-Colin and J. L. del Rio,J. Stat. Phys. 16:235 (1977).Google Scholar
  2. 2.
    R. Zwanzig,Phys. Rev. 124:983 (1961).Google Scholar
  3. 3.
    H. Mori, H. Fujisaka, and H. Shigematsu,Prog. Theor. Phys. 51:209 (1974).Google Scholar
  4. 4.
    H. Mori and H. Fujisaka,Prog. Theor. Phys. 79:764 (1973).Google Scholar
  5. 5.
    L. S. Garcia-Colin and R. M. Velasco,Phys. Rev. A 12:646 (1975).Google Scholar
  6. 6.
    R. Zwanzig, inProc. of the 6th IUPAP Conf. in Statistical Mechanics, S. A. Rice, K. Freed, and J. C. Light, eds. (Univ. of Chicago Press, Chicago, Ill., 1972), p. 241.Google Scholar
  7. 7.
    K. Kawasaki,Prog. Theor. Phys. 51:1064 (1974).Google Scholar
  8. 8.
    K. Kawasaki, inProc. of the 6th IUPAP Conf. in Statistical Mechanics, S. A. Rice, K. Freed, and J. C. Light, eds. (Univ. of Chicago Press, Chicago, Ill., 1972), p. 259.Google Scholar
  9. 9.
    M. S. Green,J. Chem. Phys. 20:1281 (1952).Google Scholar
  10. 10.
    N. G. van Kampen,Can. J. Phys. 39:551 (1961).Google Scholar
  11. 11.
    R. L. Stratonovich,Topics in the Theory of Random Noise I (Gordon and Breach, New York, 1963).Google Scholar
  12. 12.
    K. Kawasaki and J. L. Gunton,Phys. Rev. A 8:2048 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • J. L. del Rio
    • 1
    • 2
  • L. S. García-Colín
    • 3
    • 4
  1. 1.Escuela Superior de Fisica y Matemática IPNZacatencoMexico
  2. 2.Becario de COFAA-IPNMexico
  3. 3.Departamento de Fisica UAM-IztapalapaMexico
  4. 4.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico

Personalised recommendations