Journal of Statistical Physics

, Volume 30, Issue 2, pp 537–547 | Cite as

Kinetics of adsorption on stepped surfaces and the determination of surface diffusion constants

  • C. H. Wu
  • E. W. Montroll


Nitrogen adsorption on stepped W(110) surfaces is examined to illustrate a theory of surface kinetics. Experimental findings by Besockeet al. have shown that nitrogen chemisorbs dissociatively only at the step corner sites of a W(110) surface. Thus the rate of dissociation reveals the mobility of nitrogen and its interaction with the surface. Using continuous-time-random-walk theory, we obtain the probability that molecules reach the step corner sites as a function of time. A kinetic model of nitrogen dissociation is proposed to calculate a coverage function that is in good agreement with experiment. The surface diffusion constant of nitrogen molecules is obtained and is in accordance with previous observations that nitrogen molecules are first weakly physisorbed on the W(110) terrace. Finally, the coverage functions for different step densities are predicted.

Key words

Surface diffusions random walks lattices periodic traps dissociation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Gomer,Solid State Physics, Vol. 30 (Academic Press, New York, 1975); also R. DiFoggio and R. Gomer,Phys. Rev. Lett. 44:1258 (1980).Google Scholar
  2. 2.
    V. Ponec, Z. Knor, and S. Cerny,Adsorption on Solids (CRC Press, Cleveland, 1974).Google Scholar
  3. 3.
    H. Wagner, inSpringer Tracts of Modern Physics. Vol. 85, G. Hohler and E. A. Niekisch, eds. (Springer, Heidelberg, 1979).Google Scholar
  4. 4.
    K. Besocke and H. Wagner,Surface Sci. 87:457 (1979).Google Scholar
  5. 5.
    J. K. Norskov, A. Houmoller, P. K. Johansson, and B. J. Lundqvist,Phys. Rev. Lett. 46:257 (1981).Google Scholar
  6. 6.
    E. W. Montroll and G. H. Weiss,J. Math. Phys. 6:167 (1965).Google Scholar
  7. 7.
    E. W. Montroll and H. Scher,J. Stat. Phys. 9:101 (1973).Google Scholar
  8. 8.
    E. W. Montroll,J. Math. Phys. 10:753 (1969).Google Scholar
  9. 9.
    E. W. Montroll and B. J. West, inFluctuation Phenomena, J. L. Leibowitz and E. W. Montroll, eds. Chap. 2, p. 63. (North Holland, Amsterdam, 1979).Google Scholar
  10. 10.
    E. W. Montroll, Am. Math. Soc. 16th Symp. on Appl. Math. p. 193 (1964).Google Scholar
  11. 11.
    S. P. Singh-Boparai, M. Bowker, and D. A. King,Surface Sci. 53:55 (1975).Google Scholar
  12. 12.
    D. L. Adams and L. H. Germer,Surface Sci. 27:21 (1971).Google Scholar
  13. 13.
    D. A. King and M. G. Wells,Surface Sci. 29:454 (1972).Google Scholar
  14. 14.
    K. Besocke and S. Berger, in Proc. 7th Intern. Vacuum Congr. and 3rd Intern. Conf. on Solid Surfaces. Vol. II, p. 893. (Vienna, 1977).Google Scholar
  15. 15.
    K. Besocke and S. Berger,Vacuum-Technik 27:66 (1978).Google Scholar
  16. 16.
    A. Polak and G. Ehrlich,J. Vacuum Sci. Technol. 14:407 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • C. H. Wu
    • 1
  • E. W. Montroll
    • 2
  1. 1.RCA LaboratoriesUSA
  2. 2.University of MarylandUSA

Personalised recommendations