Journal of Chemical Ecology

, Volume 13, Issue 6, pp 1455–1480 | Cite as

Monoterpene metabolism in female mountain pine beetles,Dendroctonus ponderosae Hopkins, attacking ponderosa pine

  • H. D. PierceJr.
  • J. E. Conn
  • A. C. Oehlschlager
  • J. H. Borden
Article

Abstract

Abdominal volatiles of female mountain pine beetles,Dendroctonus ponderosae Hopkins, fed in ponderosa pine,Pinus ponderosa Dougl. ex Laws, and in lodgepole pine,P. contorta var.latifolia Engelmann, were analyzed by gas chromatography and coupled gas chromatography-mass spectrometry and were found to comprise host oleoresin components and beetle-produced alliylic alcohols, aldehydes, and ketones derived from host monoterpenes. Neitherexo- andendo-brevicomin nor frontalin were detected. Three metabolic pathways are proposed to account for the distribution of beetle-produced monoterpene alcohols. The first pathway involves hydroxylation of monoterpene substrates on allylic methyl groups which areE to a methylene or vinyl group. This oxidation pathway is indiscriminate with respect to substrate and probably functions to detoxify monoterpenes. A second pathway, which hydroxylates theendo-cyclic methyleneE to a vinyl methyl group of bicyclic monoterpenes to give almost exclusively thetrans alcohol, is hypothesized to be involved in pheromone production. A third detoxification pathway involves anti-Markovnikov addition of water to theexo-cyclic double bond of β-phellandrene to give predominantlytrans-2-p-menthen-7-ol.

Key words

Dendroctonus ponderosae mountain pine beetle Coleoptera Scolytidae monoterpene metabolism monoterpene alcohols pheromones allylic hydroxylation anti-Markovnikov hydration Pinus ponderosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, S.P., Brown, H.C., Suzuki, A., Nozawa, S., andItoh, M. 1969. Hydroboration of terpenes V. Isomerization of (+)-sabinene to (−)-α-thujene. Hydroboration of (+)-sabinene and (+)-α-thujene with configurational assignments for the thujanols.J. Org. Chem. 34:3015–3022.Google Scholar
  2. Borden, J.H. 1985. Aggregation pheromones, pp. 257–285in G.A. Kerkut (ed.). Behavior, Vol. 9,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford.Google Scholar
  3. Borden, J.H., Conn, J.E., Pierce, H.D., Jr., Friskie, L.M., Scott, B., Oehlschlager, A.C., andChong, L.J. 1983. Semiochemicals for mountain pine beetle in British Columbia; baited tree studies.Can. J. For. Res. 13:325–333.Google Scholar
  4. Borden, J.H.,Ryker, L.C.,Chong, L.J.,Pierce, H.D.,Johnston, B.D., andOehlschlager, A.C. 1986. Response of the mountain pine beetle,Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semichemicals in British Columbia lodgepole pine Forests.Can. J. For. Res. In press.Google Scholar
  5. Boyle, P.H.,Cocker, W., andGrayson, W.D. 1971. The chemistry of terpenes. Part XII. Oxidation of (+)-car-3-ene witht-butyl chromate and photolysis of the major oxidation product (−)-car-3-en-5-one.J. Chem. Soc. (C) 1073–1082.Google Scholar
  6. Bradshaw, J.W.S. 1984, Insect natural products—compounds derived from acetate, shikimate and amino acids, pp. 655–703,in G.A. Kerkut (ed.). Pharmacology, Vol. 11,.in G.A. Kerkut and L.I. Gilbert (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford.Google Scholar
  7. Brownlee, R.G., andSilverstein, R.M. 1968. A micropreparative gas Chromatograph and a modified carbon skeleton determinator.Anal. Chem. 40:2077–2079.Google Scholar
  8. Büchi, G., Hofheinz, W., andPaukstelis, J.V. 1969. The synthesis of (−)-aromadendrene and related sesquiterpenes.J. Am. Chem. Soc. 91:6473–6478.Google Scholar
  9. Büchi, G., andWüest, H. 1967. Eine Synthese des β-Sinensals.Helv. Chim. Acta 50:2440–2445.Google Scholar
  10. Burns, W.D.P., Carson, M.S., Cocker, W., andShannon, P.V.R. 1968. The chemistry of terpenes. Part VIII. Some volatile neutral products of the oxidation of (+)-car-3-ene with permanganate.J. Chem. Soc. (C) 3073–3079.Google Scholar
  11. Byers, J.A. 1982. Male-specific conversion of the host-plant compound, myrcene, to the pheromone (+)-ipsdienol, in the bark beetle.Dendroctonus brevicomis. J. Chem. Ecol. 8:363–371.Google Scholar
  12. Byers, J.A. 1983. Bark beetle conversion of a plant compound to a sex specific inhibitor of pheromone attraction.Science 220:624–626.Google Scholar
  13. Catalan, A.N.C., andRetamar, J.A. 1972. Oxidaciones y autoxidaciones del α-tuyeno. Estudiode algunos derivados del grupo del tuyano.An. Acad. Brasil. Cienc. 44 (Suppl.):360–367.Google Scholar
  14. Conn, J.E. 1981. Pheromone production and control mechansims inDendroctonus ponderosae Hopkins. MSc thesis, Simon Fraser University, Bumaby, British Columbia.Google Scholar
  15. Conn, J.E., Borden, J.H., Scott, B.E., Friske, L.M., Pierce, H.D., Jr., andOehlschlager, A.C. 1983. Semiochemicals for the moutain pine beetle in British Columbia: Field trapping studies.Can. J. For. Res. 13:320–324.Google Scholar
  16. Dässler, H.-G. 1959. Über die autoxydation des sabinens.J. Liebigs Ann. Chem. 622:194–196.Google Scholar
  17. Fish, R.H.Browne, L.E.,Wood, D.L., andHendry, L.B. 1979. Pheromone biosynthetic pathways: Conversion of deuterium labelled ispsdienol with sexual and entioselectivity inIps paraconfusus Lanier.Tetrahedron Lett. 1465–1468.Google Scholar
  18. Flath, R.A., andForrey, R.R. 1977. Volatile components of papaya (Carica papaya L., solo variety).J. Agric. Food Chem. 25:103–109.Google Scholar
  19. Francke, W., andVité, J.P. 1983. Oxygenated terpenes in pheromone systems of bark beetles.Z. Angew. Entomol. 96:146–156.Google Scholar
  20. Fujita, Y., Fujita, S.-I., andYoshikawa, H. 1970.trans- andcis-Yabunikkeol, new monoterpene alcohols isolated from the essential oils ofCinnamomum japonicum Sieb.Bull. Chem. Soc. Jpn. 43:1599.Google Scholar
  21. Godefroot, M., Sandra, P., andVerzele, M. 1981. New method for quantitative essential oil analysis.J. Chromatogr. 203:325–335.Google Scholar
  22. Godefroot, M., Stechele, M., Sandra, M., andVerzele, M. 1982. A new method for quantitative analysis of organochlorine pesticides and polychlorinated biphenyls.J. High Resolut. Chromatogr. Chromatogr. Commun. 5:75–79.Google Scholar
  23. Gollnick, K., andSchade, G. 1966a. Studien in der Caranreiche. III. Zur Darstellung des (+)-(1R∶6S)-Δ4(10)-Carens[β-caren].Tetrahedron 22:133–137.Google Scholar
  24. Gollnick, K., andSchade, G. 1966b. Studien in der Caranreihe. VI. Photosensibilisierte-O2-Übertragung auf (−)-cisΔ2-Caren, (−)-trans2-Caren, (+)-Δ4(10)-Caren and (+)-Δ4-Caren. Darstellung des (+)-trans-Carans.Tetrahedron Lett. 2335–2341.Google Scholar
  25. Gollnick, K., Schroeter, S., Ohloff, G., Schade, G. andSchenck, G.O. 1965. Zur Photosensibiliserten O2-Übertragung auf (+)-Caren-(3).J. Liebigs. Ann. Chem. 687:14–25.Google Scholar
  26. Granger, R., Passet, J., andGirard, J.P. 1972. Methyl-2-methylene-6-octadiene-2,7-ol isole dThymus vulgaris.Photochemistry 11:2301–2305.Google Scholar
  27. Hughes, P.R. 1973a.Dendroctonus: Production of pheromones and related compounds in response to host monoterpenes.Z. Angew. Entomol. 73:294–312.Google Scholar
  28. Hughes, P.R. 1973b. Effect of α-pinene exposure on trans-verbenol synthesis inDendroctonus ponderosae Hopk.Experientia 60:261–262.Google Scholar
  29. Hunt, D.W.A., Borden, J.H., Pierce, H.D., Jr., Slessor, K.N., King, G.G.S., andCzYEWSKA, E.K. 1986. Sex-specific production of ipsdienol and myrcenol byDendroctonus ponderosae (Coleoptera: Scolytidae) exposed to myrcene vapors.J. Chem. Ecol. 12:1579–1586.Google Scholar
  30. Ishida, T.,Asakawa, Y.,Okano, M., andAratani, T. 1977. Biotransformation of terpenoids in mammals. I. Biotransformation of 3-carene and related compounds in rabbits.Tetrahedron Lett. 2437–2440.Google Scholar
  31. Ishida, T., Asakawa, Y., Takemoto, T., andAratani, T. 1981. Terpenoids biotransformation in mammals. III: Biotransformation of α-pinene, β-pinene, pinane, 3-carene, carane, myrcene and p-cymene in rabbits.J. Pharm. Sci. 70:406–415.Google Scholar
  32. Jennings, W., andShibamoto, T. 1980. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic Press, New York.Google Scholar
  33. Kayahara, H., Ueda, H., Ichimoto, I., andTatsumi, J. 1968. Isomerization of terpenes. The isomerization of (−)-perillaldehyde top-mentha-1,3-dien-7-al with aqueous sulfuric acid.J. Org. Chem. 33:45236–4537.Google Scholar
  34. Klimetzek, D., andFrancke, W. 1980. Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols inIps species.Experientia 36:1343–1344.Google Scholar
  35. Libbey, L.M., Ryker, L.C., andYandell, K.L. 1985. Laboratory and field studies of volatiles released byDendroctonus ponderosae.Z. Angew. Entomol. 100:381–392.Google Scholar
  36. Mirov, N.T. 1961. Composition of gum turpentines of pines. U.S. For. Serv. Tech. Bull. No. 1239, pp. 87–92.Google Scholar
  37. Pitman, G.B., andVité, J.P. 1969. Aggregation behavior ofDendroctonus ponderosae (Cleoptera: Scolytidae) in response to chemical messengers.Can. Entomol. 101:143–149.Google Scholar
  38. Plummer, E.L., Stewart, T.E., Byrne, K., Pearce, G.T., andSilverstein, R.M. 1976. Determination of the enantiomeric composition of several insect pheromone alcohols.J. Chem. Ecol. 1:307–331.Google Scholar
  39. Renwick, J.A.A., andHughes, P.R. 1975. Oxidation of unsaturated cyclic hydrocarbons byDendroctonus frontalis.Insect Biochem. 5:459–463.Google Scholar
  40. Renwick, J.A.A., Hughes, P.R., andKrull, I.S. 1976a. Selective production ofcis- and transverbenol from (−)- and (+)-α-pinene by a bark beetle.Science 191:199–201.Google Scholar
  41. Renwick, J.A.A., Pitman, G.B., andVité, J.P. 1976b. 2-Phenylethanol isolated from bark beetles.Naturwissenschaften 63:1968.Google Scholar
  42. Renwick, J.A.A., Hughes, P.R., Pitman, G.B., andVité, J.P. 1976c. Oxidation products of terpenes identified fromDendroctonus andIps bark beetles.J. Insect. Physiol. 22:725–727.Google Scholar
  43. Ryker, L.C., andLibbey, L.M. 1982. Frontalin in the male mountain pine beetle.J. Chem. Ecol. 8:1399–1409.Google Scholar
  44. Schulz, L., andDoll, W. 1944. Isomerie in der Verbanlreihe.Chem. Zent. 115:755.Google Scholar
  45. Smith, R.H. 1964. The monoterpenes of lodgepole pine oleoresin.Phytochemistry 3:259–262.Google Scholar
  46. Smith, R.H. 1965. Effects of monoterpene vapors on western pine beetle.J. Econ. Entomol. 58:509–510.Google Scholar
  47. Smith, R.H. 1966. Resin quality as a factor in the resistance of pines to bark beetles, pp. 189–196,in H.D. Gerhold, R.E. Mcdermott, E.J. Schreiner, and J.A. Winieski (eds). Breeding Pest-Resistant Trees. Pergamon Press, Oxford.Google Scholar
  48. Smith R.H. 1977. Monoterpenes of ponderosa pine xylem resin in western United States. USDA, For. Ser. Tech. Bull. No. 1532.Google Scholar
  49. Varo, P.T., andHeinz, D.E. 1970a. Volatile components of cumin seed oil.J. Agric. Food Chem. 18:234–2138.Google Scholar
  50. Varo, P.T., andHeinz, D.E. 1970b. Identification and characterization of 1,4-p-menthadien-7-al isolated from cumin seeds.J. Agric. Food Chem. 18:2339–242.Google Scholar
  51. Von Sydow, E., Anjou, K., andKarlsson, G. 1970.Arch. Mass Spectral Data 1:387–495.Google Scholar
  52. Wheeler, J.W., andShonowo, O.O. 1974. Mass spectra of bicyclic terpenoid ketones.Organ. Mass. Spec. 9:1173–1181.Google Scholar
  53. White, R.A., Jr., Agosin, R., Franklin, R.T., andWebb, J.W. 1980. Bark beetle pheromones: Evidence for physiological synthesis mechanisms and the ecological implications.Z. Angew. Entomol. 90:255–274.Google Scholar
  54. Whitham, G.H. 1961. The reaction of α-pinene with lead tetraacetate.J. Chem. Soc. 2232–2236. 2236.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • H. D. PierceJr.
    • 1
  • J. E. Conn
    • 2
  • A. C. Oehlschlager
    • 1
  • J. H. Borden
    • 2
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  2. 2.Centre for Pest Management, Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  3. 3.Department of BotanyUniversity of TorontoTorontoCanada

Personalised recommendations