Journal of Chemical Ecology

, Volume 11, Issue 10, pp 1349–1358 | Cite as

Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant

  • May Berenbaum
  • Jonathan J. Neal


Myristicin, a methylenedioxyphenyl (MDP)-containing phenylpropene constituent of the leaves of many plants in the family Umbelliferae, is a highly effective Synergist of the cooccurring furanocoumarin xanthotoxin. As little as 0.10 % in an artificial diet can increase the toxicity of xanthotoxin toHeliothis zea (Lepidotera: Noctuidae) fivefold. In addition to increasing the proportion of caterpillars dying at a given xanthotoxin concentration, myristicin also increases the rate at which they die and increases the time to molt of surviving larvae. That there was no increase in the deterrency of xanthotoxin in the presence of myristicin suggests that the mechanism of synergism is not behaviorial but rather is biochemical, via MDP competitive inhibition of microsomal mixed function oxidases.

Key words

Methylenedioxyphenyl compounds myristicin piperonyl butoxide synergism Umbelliferae xanthotoxin furanocoumarins Heliothis zea Lepidoptera Noctuidae insect-plant interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashraf, M., Sandra, P.J., Saeed, T., andBhatty, M.K. 1979. The essential oils of the Pakistani species of the family Umbelliferae. 33.0Petroselinum crispum (parsley) seed oil.Pak. J. Sci. Ind. Res. 22:262–264.Google Scholar
  2. Berenbaum, M. 1978. Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insects herbivores.Science 201:532–534.Google Scholar
  3. Berenbaum, M. 1981. Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.).Oecologia 49:236–244.Google Scholar
  4. Berenbaum, M. 1985. Brementown revisited: Allelochemical interactions in plants.Recent Adv. Phytochem. 19:139–169.Google Scholar
  5. Bohannon, M.B., andKleiman, R. 1977, Myristicin: The major volatile component in mature seed ofPortenschlagia ramosissima.Lipids 12:321–323.Google Scholar
  6. Brattsten, L.B. 1979a. Biochemical defense mechanisms in herbivores against plant allelochemicals, pp. 199–271,in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  7. Brattsten, L.B. 1979b. Ecological significance of mixed function oxidations.Drug Metab. Rev. 10:35–58.Google Scholar
  8. Brattsten, L.B., Wilkinson, C.F., andEisner, T. 1977. Herbivore-plant interactions: Mixed function oxidases and secondary plant substances.Science 196:1349–1352.Google Scholar
  9. Casida, J.E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists.J. Agric. Food Chem. 18:753–760.Google Scholar
  10. Chang, K.M., Wilkinson, C.F., andHetnarski, K. 1981. Spectral and inhibitory interactions of methylenedioxyphenyl compounds with southern armyworm (Spodoptera eridania) midgut microsomes.Pestic. Biochem. Physiol. 15:32–42.Google Scholar
  11. Chew, F.S., andRodman, J.E. 1979. Plant resources for chemical defense, pp. 271–307,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. New York, Academic Press.Google Scholar
  12. Franz, C., andGläsl, H. 1976. Comparative investigations of fruit-, leaf- and root-oils of some parsley varieties.Qual. Plant. 25:253–262.Google Scholar
  13. Fuhremann, T.W., andLichtenstein, E.P. 1979. Insecticide toxicity and degradation in houseflies as affected by naturally occurring food plant components.J. Agric. Food Chem. 27:87–91.Google Scholar
  14. Harborne, J.B., Heywood, V.H., andWilliams, C.A. 1969. Distribution of myristicin in seeds of the Umbelliferae.Phytochemistry 8:1729–1732.Google Scholar
  15. Hays, W.L. 1973. Statistics for the Social Sciences, 2nd ed. New York, Holt, Rinehart and Winston, pp. 778–780, 785–786.Google Scholar
  16. Heywood, V.H. (ed.) 1971. The Biology and Chemistry of the Umbelliferae.Bot. J. Linn. Soc. 64 (Suppl. 1):1–438.Google Scholar
  17. Ivie, G.W., Bull, D., Beier, R.C., Pryor, N.W., andOertli, E.H. 1983. Metabolic detoxification: Mechanism of insect resistance to plant psoralens.Science 221:374–376.Google Scholar
  18. Janzen, D.H. 1973. Community structure of secondary compounds in nature.Pure Appl. Chem. 34:529–538.Google Scholar
  19. Kogan, J.,Sell, D.K.,Stinner, R.E.,Bradley, J.R., andKogan, M. 1978. V. A bibliography ofHeliothis zea (Boddie) andH. virescens (F.) (Lepidoptera: Noctuidae). International Agricultural Publications INTSOY Series Number 17, 242 pp.Google Scholar
  20. Krieger, R.I., Feeny, P.P., andWilkinson, C.F. 1971. Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defenses?Science 172:579–581.Google Scholar
  21. Kubeczka, K.-H. andStahl, E. 1975 Über ätherische öle der Apiaceae (Umbelliferae). I. Das Würzelöl vonPastinaca sativa.Planta Med. 27:235–241.Google Scholar
  22. Lichtenstein, E.P. 1966. Insecticides occurring naturally in crops, pp. 34–38,in R. Gould (ed.). Natural Pest Control Products, ACS Symposium Series 53, American Chemical Society, Washington, D.C.Google Scholar
  23. Lichtenstein, E.P., andCasida, J.E. 1963. Myristicin, an insecticide and synergist occurring naturally in the edible parts of parsnip.J. Agric. Food Chem. 11:410–415.Google Scholar
  24. Lichtenstein, E.P., Liang, T.T., Shulz, K.R., andSchnoes, H.K., andCarter, G.T. 1974. Insecticidal and synergistic components from dill plants.J. Agric. Food Chem. 22:658–664.Google Scholar
  25. Muckensturm, B., Duplay, D., Robert, P.C., Simonis, M.T., andKienlen, J.C. 1981. Substances antiappétantes pour insectes phytophages présentes dansAngelica sylvestris etHeracleum sphondylium.Biochem. Syst. Ecol. 9:289–292.Google Scholar
  26. Murray, R.D.H., Mendez, J., andBrown, S. A. 1982. The Natural Coumarins. J. Wiley & Sons, Ltd., Chichester, 702 pp.Google Scholar
  27. Newman, A.A. 1962. The occurrence, genesis and chemistry of the phenolic methylenedioxy ring in nature.Chem. Prod. 25:161–166.Google Scholar
  28. Stahl, E., andKubeczka, K.-H. 1979. Über ätherische öle der Apiaceae (Umbelliferae). VI. Untersuchungen zum Vorkommen von Chemotypen beiPastinaca sativa L.Planta Med. 37:49–56.Google Scholar
  29. Tietz, H.M. 1972. An Index to the Described Life Histories, Early Stages, and Hosts of the Macrolepidoptera of the Continental United States and Canada, Vol 1 and 2. A.C. Allyn, Sarasota, Florida.Google Scholar
  30. Van der Waerden, B.L. 1969. Mathematical Statistics. Springer Verlag, New York.Google Scholar
  31. Wat, C.-K., Prasad, S.K., Graham, E.A., Partington, S., Arnason, T., Towers, G.H.N., andLam, J. 1981. Photosensitization of invertebrates by natural polyacetylenes.Biochem. Syst. Ecol. 9:59–62.Google Scholar
  32. Wilkinson, C.F., 1973. Insecticide synergism. Chemtech 1973 (August):492–497.Google Scholar
  33. Wilkinson, C.F., 1976. Insecticide synergists, pp. 195–215,in R.L. Metcalf and J.J. McKelvey (eds.). The Future for Insecticides: Needs and Prospects, Wiley & Sons, New York.Google Scholar
  34. Wulf, L.W., Nagel, C.W., andBranen, A.L. 1978. Analysis of myristicin and falcarinol in carrots by high pressure liquid chromatography.J. Agric. Food Chem. 26:1390–1393.Google Scholar
  35. Yajima, T., Kato, N. andMunakata, K. 1977. Isolation of insect antifeeding principles inOrixa japonica Thunb.Agric. Biol. Chem. 41:1263–1268.Google Scholar
  36. Yates, S.G., England, R.E., Kwolek, W.F., andSimon, P.W. 1983. Analysis of carrot constituents: Myristicin, falcarinol and falcarindiol, pp. 333–334, in J.W. Finley and D.E. Schwass (eds.). ACS Symposium Series No. 234, Xenobiotics in Food and Feeds. American Chemical Society, Washington, D.C.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • May Berenbaum
    • 1
  • Jonathan J. Neal
    • 1
  1. 1.Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations