Journal of Chemical Ecology

, Volume 11, Issue 12, pp 1757–1768 | Cite as

Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior

  • Martin S. Obin
  • Robert K. Vander Meer


Behavioral and chemical studies with laboratory colonies indicate that the imported fire antSolenopsis invicta Buren (Myrmicinae) disperses venom through the air by raising and vibrating its gaster (i.e., “gaster flagging”). This mechanism of airborne venom dispersal is unreported for any ant species. Foraging workers utilize this air-dispersed venom (up to 500 ng) to repel heterospecifics encountered in the foraging arena, while brood tenders dispense smaller quantities (∼ 1 ng) to the brood surface, presumably as an antibiotic. Brood tenders removed from the brood cell and tested in heteropspecific encounters in the foraging arena exhibited the complete repertoire of agonistic gaster flagging behavior. These observations suggest that airborne venom dispersal by workers is context specific rather than temporal caste specific and that workers can control the quantity of venom released.

Key words

Ants Solenopsis invicta Hymenoptera Formicidae gaster flagging alkaloids defensive behavior venom antibiotic caste 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C.S., andTraniello, J.F.A. 1981. Chemical interference competition byMonomorium minimum (Hymenoptera: Formicidae).Oecologia 51:265–270.Google Scholar
  2. Banks, W.A., Lofgren, C.S., Jouvenaz, D.P., Stringer, C.E., Biship, P.M., Williams, D.F., Wojcik, D.P., andGlancey, B.M. 1981. Techniques for collecting, rearing, and handling imported fire ants. U.S. Dep. Agric. Sci. Ed. Admin., AAT-S-21:1–9.Google Scholar
  3. Beattie, A.J., Turnbull, L., Knox, R.B., andWilliams, E.G. 1984. Ant inhibition of pollen function: A possible reason why ant pollination is rare.Am. J. Bot. 71:421–426.Google Scholar
  4. Bhatkar, A., Whitcomb, W.H., Buren, W.F., Callahan, P., andCarlysle, T. 1972. Confrontation behavior betweenLasius neoniger (Hymenoptera: Formicidae) and the imported fire ant.Environ. Entomol. 1:275–279.Google Scholar
  5. Blum, M.S., Jones, T.H., Hölldobler, B., Fales, H.M., andJaouni, T. 1980. Alkaloidal venom mace: offensive use by a thief ant.Naturwissenschaften 67:144–145.Google Scholar
  6. Blum, M.S., Walker, J.R., Callahan, P.S., andNovak, A.F. 1958. Chemical, insecticidal and antibiotic properties of fire ant venom.Science 128:306–307.Google Scholar
  7. Bradshaw, J.W.S., andHowse, P.E. 1984. Semiochemicals of ants, pp. 429–473,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Sinauer Assoc., Sunderland, MA.Google Scholar
  8. Brand, J.M., andBlum, M.S. 1973. Biochemical evolution in fire ant venoms.Insect Biochem. 3:45–51.Google Scholar
  9. Buschinger, A. 1968. “Locksterzeln” begattungsbereiter ergatoider Weibchen vonHarpagoxenus sublaevis NYL. (Hymenoptera, Formicidae).Experientia 24:297.Google Scholar
  10. Buschinger, A. 1971. “Locksterzeln” und Kopula der sozial parasitischen AmeiseLeptothorax kutteri Buschinger (Hym., Form.).Zool. Anz. 186:242–248.Google Scholar
  11. Hermann, H.R., andBlum, M.S. 1981. Defensive mechanisms in the social Hymensptera, pp. 77–197,in H.R. Hermann (eds.).Social Insects, Vol II, Academic Press, New York.Google Scholar
  12. Hölldobler, B. 1973. Chemische Strategie beim Nahrumgswerwerb der Diebameise (Solenopsisfugax Latr.) und der Pharaoameise (Monomoriumpharaonis L.).Oecologia 11:371–380.Google Scholar
  13. Hölldobler, B. 1982. Interference strategy ofIridomyrmex pruinosum (Hymenoptera: Formicidae) during foraging.Oecologia 52:208–213.Google Scholar
  14. Iwanami, Y., andIwadare, T. 1978. Inhibiting effects of myrmicacin on pollen growth and pollen tube mitosis.Bot. Gaz. 139:42–45.Google Scholar
  15. Jaffe, K., andPuche, H. 1984. Colony-specific territorial marking with the metapleural gland secretion in the antSolenopsis geminata (Fabr).J. Insect Physiol. 30:265–270.Google Scholar
  16. Jouvenaz, D.P., Blum, M.S., andMacConnessll, J.G. 1972. Antibacterial activity of venom alkaloids from the imported fire ant,Solenopsis invicta Buren.Antimicrob. Agents Chemother. 2:291–293.Google Scholar
  17. Lofgren, C.S., Banks, W.A., andGlancey, B.M. 1975. Biology and control of imported fire ants.Annu. Rev. Entomol. 20:1–30.Google Scholar
  18. Maschwitz, U. 1964. Gefahrenalarmstoffe und Gefahrenalarmierung bei Sozialen Hymenopteron.Z. Vergl. Physiol. 47:596–655.Google Scholar
  19. Maschwitz, U., andKloft, W. 1971. Morphology and function of the venom apparatus of insects, bees, wasps, ants and caterpillars, pp. 31–60,in W. Bücherl and E.E. Buckley (eds.). Venomous Animals and Their Venoms. Academic Press, New York.Google Scholar
  20. Maschwitz, U., andKloft, W. 1971. Morphology and function of the venom apparatus of insects, bees, wasps, ants and caterpillars, pp. 31–60,in W. Bücherl and E.E. Buckley (eds.). Venomous Animals and Their Venoms. Academic Press, New York.Google Scholar
  21. Maschwitz, U., Koob, K. andSchildknecht, H. 1970. Ein beitrag zur fumktion der metathoracaldrüse der ameisen.J. Insect Physiol. 16:387–404.Google Scholar
  22. Mason, B.J., Jayaratri, O.W., andWoods, J.D. 1963. An improved vibrating capillary device for producing uniform water droplets of 15 to 500 μm radius.J. Sci. Instrum. 40:247–249.Google Scholar
  23. Mirenda, J.T., andVinson, S.B. 1981. Division of labour and specification of castes in the red imported fire antSolenopsis invicta Buren.Anim. Behav. 29:410–420.Google Scholar
  24. Möglich, M. 1979. Tandem calling pheromone in the genusLeptothorax (Hymenoptera: Formicidae): Behavioral analysis of specificity.J. Chem. Ecol. 5:35–52.Google Scholar
  25. Möglich, M., Maschwitz, U., andHölldobler, B. 1974. Tandem calling: A new signal in ant communication.Science 186:1046–1047.Google Scholar
  26. Post, D.C., andJeanne, R.L. 1983. Venom: Source of a sex pheromone in the social waspPolistes fuscatus (Hymenoptera: Vespidae).J. Chem. Ecol. 9:259–266.Google Scholar
  27. Rayleigh, L. 1879. On the capillary phenomena of jets.Proc. R. Soc. London, Ser. A 291:71–97.Google Scholar
  28. Schildknecht, H., andKoob, H. 1970. Plant bioregulators in the metathoracic glands of myrmicine ants.Angew. Chem. Int. Ed. Engl. 9:173.Google Scholar
  29. Schildknecht, H., andKoob, H. 1971. Myrmicacin, the first insect herbicide.Angew. Chem. Int. Ed. Engl. 10:124–125.Google Scholar
  30. Schmidt, J.O. 1978. Ant venoms—study of venom diversity, pp. 247–264,in D.L. Shankland, R.M. Hollingworth, and T. Smyth (eds.). Pesticide and Venom Neurotoxicity. Plenum Press, New York.Google Scholar
  31. Stringer, C.E., Glancey, B.M., Craig, C.C., andMartin, B.B. 1972. Air separation of different castes of the imported fire ant.J. Econ. Entomol. 65:872–873.Google Scholar
  32. Touchstone, J.C., andDobbins, M.F. 1978. Practice of Thin-Layer Chromatography. John Wiley & Sons, New York. 383 pp.Google Scholar
  33. Wilson, E.O. 1971. The Insect Societies. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  34. Wilson, E.O. 1978. Division of labor in fire ants based on physical castes.J. Kans. Entomol. Soc. 51:615–636.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Martin S. Obin
    • 1
  • Robert K. Vander Meer
    • 2
  1. 1.Department of ZoologyUniversity of FloridaGainesville
  2. 2.Insects Affecting Man and Animals Research LaboratoryUSDA-ARSGainesville

Personalised recommendations