Journal of Statistical Physics

, Volume 44, Issue 5–6, pp 793–827 | Cite as

Geometry of random sequential adsorption

  • Einar L. Hinrichsen
  • Jens Feder
  • Torstein Jøssang


By sequentially adding line segments to a line or disks to a surface at random positions without overlaps, we obtain configurations of the one- and two-dimensional random sequential adsorption (RSA) problem. We have simulated the one- and two-dimensional problem with periodic boundary condition. The one-dimensional simulations are compared with the exact analytical solutions to give an estimate of the accuracy of the simulation. In two dimensions the geometrical properties of the RSA configuration are discussed and in addition known results of the RSA process are reproduced. Various statistical distributions of the Voronoi-Dirichlet (VD) network corresponding to the RSA disk configuration are analyzed. In order to characterize pores in the RSA configuration, we introduce circular holes. There is a direct correspondence between vertices of the VD network and these holes, and also between direct/indirect geometrical neighbors and these holes. The hole size distribution is found to be a parabola. We also find general relations that connect the asymptotic behavior of the surface coverage, the correlation function, and the hole size distribution.

Key words

Random sequential adsorption random disk packing correlations pore size distribution Voronoi-Dirichlet network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. González, P. C. Hemmer, and J. S. Høye,Chem. Phys. 3:228 (1974).Google Scholar
  2. 2.
    L. Finegold and J. T. Donnell,Nature 278:443 (1979).Google Scholar
  3. 3.
    M. Hasegawa and M. Tanemura, inRecent Developments in Statistical Interference and Data Analysis, K. Matusita, ed. (North-Holland, Amsterdam, 1980).Google Scholar
  4. 4.
    J. Feder and I. Giaever,J. Coll. Interface Sci. 78:144 (1980).Google Scholar
  5. 5.
    B. Widom,J. Chem. Phys. 44:3888 (1966).Google Scholar
  6. 6.
    J. Feder,J. Theor. Biol. 87:237 (1980).Google Scholar
  7. 7.
    Y. Pomeau,J. Phys. A: Math. Gen. A13:L193 (1980).Google Scholar
  8. 8.
    R. H. Swendsen,Phys. Rev. A 24:504 (1981).Google Scholar
  9. 9.
    A. Renyi,Publ. Math. Inst. Hungar. Acad. Sci. 3:109 (1958). English Translation:Sel. Trans. Math. Stat. Prob. 4:203 (1963).Google Scholar
  10. 10.
    J. K. Mackenzie,J. Chem. Phys. 37:723 (1962).Google Scholar
  11. 11.
    B. Widom,J. Chem. Phys. 58:4043 (1973).Google Scholar
  12. 12.
    B. E. Blaisdell and H. Solomon,J. Appl. Prob. 7:667 (1970).Google Scholar
  13. 13.
    W. S. Jodrey and T. M. Tory,J. Statist. Comput. Simul. 10:87 (1980).Google Scholar
  14. 14.
    E. M. Tory, W. S. Jodrey, and D. K. Pickard,J. Theor. Biol. 102:439 (1983).Google Scholar
  15. 15.
    M. Tanemura,Ann. Inst. Stat. Math. 31B:351 (1979).Google Scholar
  16. 16.
    J. D. Bernal,Proc. Roy. Soc. Lond. A280:299 (1964).Google Scholar
  17. 17.
    J. L. Finney,Proc. Roy. Soc. Lond. A319:479 (1970).Google Scholar
  18. 18.
    R. Zallen,The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).Google Scholar
  19. 19.
    H. S. M. Coxeter,Introduction to Geometry, 2nd ed. (John Wiley & Sons, Toronto, 1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Einar L. Hinrichsen
    • 1
  • Jens Feder
    • 1
  • Torstein Jøssang
    • 1
  1. 1.Department of PhysicsUniversity of Oslo, BlindemOslo 3Norway

Personalised recommendations