Journal of Statistical Physics

, Volume 53, Issue 1–2, pp 233–248 | Cite as

Motion out of noisy states

  • Rolf Landauer
Articles

Abstract

The relative occupation of competing states of local stability is not determined solely by the characteristics of the locally favored states, but depends on the noise along the whole path connecting the competing states. This is not new, but the sophistication of most modern treatments has obscured the simplicity of this central point, and here it is argued for in simple physical terms. In addition, recent work by van Kampen and by Büttiker, for particles in closed loops, subject to a force field, heavy damping, and a temperature which is a function of position in the loop, are supplemented. In that case, circulating currents are set up, and these are evaluated. A final speculative section emphasizes the difficulty in calculating the long-term time evolution of the probability distribution in complex multistable systems with state-dependent noise.

Key words

Relative stability circulating currents temperature gradients force fields state-dependent noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Clark Jones and W. H. Furry,Rev. Mod. Phys. 18:151 (1946).Google Scholar
  2. 2.
    I. Goldhirsch and D. Ronis,Phys. Rev. A 27:1616 (1983).Google Scholar
  3. 3.
    I. Goldhirsch and D. Ronis,Phys. Rev. A 27:1635 (1983).Google Scholar
  4. 4.
    D. Ryter,Z. Phys. B 41:39 (1981).Google Scholar
  5. 5.
    B. Z. Bobrovsky and Z. Schuss,SIAM J. Appl. Math. 42:174 (1982); B. Matkowsky and Z. Schuss,SIAM J. Appl. Math. 33:365 (1977); Z. Schuss and B. J. Matkowsky,SIAM J. Appl. Math. 35:604 (1979); B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 35:443 (1984); B. J. Matkowsky, Z. Schuss, and C. Tier,SIAM J. Appl. Math. 43:673 (1983).Google Scholar
  6. 6.
    R. Landauer,J. Appl. Phys. 33:2209 (1962).Google Scholar
  7. 7.
    R. Landauer,Phys. Rev. A 12:636 (1975).Google Scholar
  8. 8.
    R. Landauer,J. Stat. Phys. 13:1 (1975).Google Scholar
  9. 9.
    New York Times 127:A1, D19 (October 12, 1977).Google Scholar
  10. 10.
    N. G. van Kampen,IBM J. Res. Dev. 32:107 (1988).Google Scholar
  11. 11.
    N. G. van Kampen,Z. Phys. B 68:135 (1987).Google Scholar
  12. 12.
    M. Nüttiker,Z. Phys. B 68:161 (1987).Google Scholar
  13. 13.
    P. T. Landsberg,J. Appl. Phys. 56:1119 (1984).Google Scholar
  14. 14.
    R. Landauer,Helv. Phys. Acta 56:847 (1983).Google Scholar
  15. 15.
    A. Engel,Phys. Lett. 113A:139 (1985).Google Scholar
  16. 16.
    R. Landauer, inSelf-Organizing Systems: The Emergence of Order, F. E. Yates, D. O. Walter, and G. B. Yates, eds. (Plenum Press, New York, 1988), and references cited therein.Google Scholar
  17. 17.
    B. J. West and K. Lindenberg, inStudies in Statistical Mechanics, Vol. XIII, J. L. Lebowitz, ed. (North-Holland, Amsterdam, 1987), Chapter 2.Google Scholar
  18. 18.
    R. Landauer,Helv. Phys. Acta 56:847 (1983).Google Scholar
  19. 19.
    P. Hänggi and H. Thomas,Phys. Rep. 88:207 (1982); N. G. van Kampen, inStochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), p. 291; N. G. van Kampen,J. Stat. Phys. 24:175 (1981).Google Scholar
  20. 20.
    J. A. Christiansen,Z. Phys. Chem. B 33:145 (1936).Google Scholar
  21. 21.
    M. Büttiker and R. Landauer, inNonlinear Phenomena at Phase Transitions and Instabilities, T. Riste, ed. (Plenum Press, New York, 1982), p. 111, esp. Appendix.Google Scholar
  22. 22.
    R. Landauer,Phys. Scripta 35:88 (1987).Google Scholar
  23. 23.
    G. J. Chaitin,IBM J. Res. Dev. 21:350 (1977).Google Scholar
  24. 24.
    C. H. Bennett,Found. Phys. 16:585 (1986); R. Wright,Sciences 25(2):10 (1985).Google Scholar
  25. 25.
    H. Kühn and J. Waser, inBiophysics, W. Hoppe, W. Lohmann, H. Marki, and H. Ziegler, eds. (Springer, Heidelberg, 1983), p. 830; H. Kuhn,IBM J. Res. Dev. 32:37 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Rolf Landauer
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown Heights

Personalised recommendations