Journal of Statistical Physics

, Volume 26, Issue 3, pp 427–452 | Cite as

Rogers-Ramanujan identities in the hard hexagon model

  • R. J. Baxter
Articles

Abstract

The hard hexagon model in statistical mechanics is a special case of a solvable class of hard-square-type models, in which certain special diagonal interactions are added. The sublattice densities and order parameters of this class are obtained, and it is shown that many Rogers-Ramanujan-type identities naturally enter the working.

Key words

Statistical mechanics lattice statistics Rogers-Ramanujan identities hard hexagon model combinatorial identities basic hypergeometric series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Baxter,J. Phys. A: Math. Gen. 13:L61 (1980).Google Scholar
  2. 2.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics, Chap. 14, (to be published by Academic, London, 1981/2).Google Scholar
  3. 3.
    D. S. Gaunt and M. E. Fisher,J. Chem. Phys. 43:2840 (1965).Google Scholar
  4. 4.
    L. K. Runnels and L. L. Combs,J. Chem. Phys. 45:2482 (1966).Google Scholar
  5. 5.
    R. J. Baxter, I. G. Enting, and S. K. Tsang,J. Stat. Phys. 22:465 (1980).Google Scholar
  6. 6.
    R. J. Baxter,J. Stat. Phys. 19:461 (1978);Physica 106A:18 (1981).Google Scholar
  7. 7.
    S. K. Tsang,J. Stat. Phys. 20:95 (1979).Google Scholar
  8. 8.
    R. J. Baxter,J. Math. Phys. 9:650 (1968).Google Scholar
  9. 9.
    S. B. Kelland,Can. J. Phys. 54:1621 (1976).Google Scholar
  10. 10.
    R. J. Baxter and I. G. Enting,J. Stat. Phys. 21:103 (1979).Google Scholar
  11. 11.
    R. J. Baxter and S. K. Tsang,J. Phys. A: Math. Gen. 13:1023 (1980).Google Scholar
  12. 12.
    R. J. Baxter, Exactly Solved Models, inFundamental Problems in Statistical Mechanics V, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1980).Google Scholar
  13. 13.
    L. J. Slater,Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).Google Scholar
  14. 14.
    G. E. Andrews,The Theory of Partitions, Chap. 7 (Addison-Wesley, Reading, Massachusetts, 1976).Google Scholar
  15. 15.
    L. J. Rogers,Proc. London Math. Soc. (1),25:318 (1894).Google Scholar
  16. 16.
    S. Ramanujan,Proc. Cambridge Philos. Soc. 19:214 (1919).Google Scholar
  17. 17.
    B. J. Birch,Math. Proc. Cambridge Philos. Soc. 78:73 (1975).Google Scholar
  18. 18.
    L. J. Rogers,Proc. London Math. Soc. (2),19:387 (1921).Google Scholar
  19. 19.
    G. E. Andrews, The Hard-Hexagon Model and New Rogers-Ramanujan Type Identities, Dept. Math. Research Report 8167, Pennsylvania State University (1981).Google Scholar
  20. 20.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic, New York, 1965).Google Scholar
  21. 21.
    M. N. Barber and R. J. Baxter,J. Phys. C: Solid State Phys. 6:2913 (1973).Google Scholar
  22. 22.
    L. J. Slater,Proc. London Math. Soc. (2),54:147 (1951).Google Scholar
  23. 23.
    G. N. Watson,J. Indian Math. Soc. 20:57 (1933).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • R. J. Baxter
    • 1
  1. 1.Department of Theoretical Physics, Research School of Physical SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations