Journal of Statistical Physics

, Volume 23, Issue 3, pp 321–333 | Cite as

Trajectory divergence for coupled relaxation oscillators: Measurements and models

  • J. P. Gollub
  • E. J. Romer
  • J. E. Socolar


The exponential divergence of nearby phase space trajectories is a hallmark of nonperiodic (chaotic) behavior in dynamical systems. We present the first laboratory of measurements of divergence rates (or characteristic exponents), using a system of coupled tunnel diode relaxation oscillators. This property of sensitive dependence on initial conditions is reliably associated with broadband spectra, and both methods are used to characterize the motion as a function of the coupling strength and natural frequency ratio of the two oscillators. A simple piecewise linear model correctly predicts the major periodic and non-periodic regions of the parameter space, thus confirming that the chaotic behavior involves only a few degrees of freedom.

Key words

Dynamical systems oscillators chaos turbulence nonlinear phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Zaslavsky and B. V. Chirikov,Usp. Fiz. Nauk 14:549 (1972).Google Scholar
  2. 2.
    D. Ruelle,Ann. N.Y. Acad. Sci. 316:408 (1979).Google Scholar
  3. 3.
    G. Benettin, L. Galgani, and J.-M. Strelcyn,Phys. Rev. A 14:2338 (1976).Google Scholar
  4. 4.
    A. B. Rechester, M. N. Rosenbluth, and R. B. White,Phys. Rev. Lett. 42:1247 (1979).Google Scholar
  5. 5.
    I. Shimada and T. Nagashima,Prog. Theor. Phys. 61:1605 (1979).Google Scholar
  6. 6.
    S. D. Feit,Commun. Math. Phys. 61:249 (1978).Google Scholar
  7. 7.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series, preprint.Google Scholar
  8. 8.
    J. P. Gollub, T. O. Brunner, and B. G. Danly,Science 200:48 (1978).Google Scholar
  9. 9.
    J. P. Gollub and S. V. Benson,J. Fluid Mech., to appear.Google Scholar
  10. 10.
    A. S. Monin,Sov. Phys.—Usp. 21:429 (1978).Google Scholar
  11. 11.
    G. Ahlers and R. P. Behringer,Prog. Theor. Phys. Suppl. 64:186 (1979).Google Scholar
  12. 12.
    H. L. Swinney and J. P. Gollub, eds.,Hydrodynamic Instabilities and the Transition to Turbulence (Springer-Verlag, Berlin, New York, 1980).Google Scholar
  13. 13.
    M. I. Rabinovich,Sov. Phys.—Usp. 21:443 (1978).Google Scholar
  14. 14.
    A. S. Wightman, inStatistical Mechanics at the Turn of the Decade, E. G. D. Cohen, ed. (Marcel Dekker, New York, 1971), pp. 1–32.Google Scholar
  15. 15.
    R. M. May,Nature 261:459 (1976).Google Scholar
  16. 16.
    R. K. Otnes and L. Enochson,Digital Time Series Analysis (Wiley, New York, 1972).Google Scholar
  17. 17.
    B. V. Chirikov,Phys. Rep. 52:265 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • J. P. Gollub
    • 1
  • E. J. Romer
    • 1
  • J. E. Socolar
    • 1
  1. 1.Physics DepartmentHaverford CollegeHaverford

Personalised recommendations