Journal of Statistical Physics

, Volume 46, Issue 5–6, pp 861–909 | Cite as

Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential

  • Ya. G. Sinai


The Schrödinger difference operator considered here has the form
$$(H_\varepsilon (\alpha )\psi )(n) = - (\psi (n + 1) + \psi (n - 1)) + V(n\omega + \alpha )\psi (n)$$
whereV is aC2-periodic Morse function taking each value at not more than two points. It is shown that for sufficiently smallɛ the operatorHɛ(α) has for a.e.α a pure point spectrum. The corresponding eigenfunctions decay exponentially outside a finite set. The integrated density of states is an incomplete devil's staircase with infinitely many flat pieces.

Key words

Schrödinger operator eigenfunction eigenvalue Green's function continued fraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Mott and W. D. Twose,Adv. Phys. 10:107 (1961).Google Scholar
  2. 2.
    R. E. Borland,Proc. R. Soc. Lond. A 274:529 (1963).Google Scholar
  3. 3.
    I. Ya. Goldsheid and S. A. Molchanov,Doklady Akad. Nauk SSSR 230:761–764 (1976).Google Scholar
  4. 4.
    Ya. Goldsheid, S. Molchanov, and L. Pastur,Funct. Anal. Appl. 11:1 (1977).Google Scholar
  5. 5.
    H. Kunz and B. Souillard,Commun. Math. Phys. 78:201 (1980).Google Scholar
  6. 6.
    S. Molchanov,Math. Izv. USSR 42 (1978).Google Scholar
  7. 7.
    R. Carmona,Duke Math. J. 49:191 (1982).Google Scholar
  8. 8.
    B. Souillard, Spectral properties of discrete and continuous random Schrödinger operators: A review, Preprint (IMA, 1986).Google Scholar
  9. 9.
    J. Fröhlich and T. Spencer,Commun. Math. Phys. 88:151 (1983).Google Scholar
  10. 10.
    J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer,Commun. Math. Phys. 101:21 (1985).Google Scholar
  11. 11.
    G. Jona-Lasinio, F. Martinelli, and E. Scoppola,J. Phys. A 17:73 (1984).Google Scholar
  12. 12.
    F. Delyon, Y. Levy, and B. Souillard,Commun. Math. Phys. 100:463 (1985).Google Scholar
  13. 13.
    B. Simon, M. Taylor, and T. Wolff,Phys. Rev. Lett. 54:1589 (1985).Google Scholar
  14. 14.
    F. Wegner,Z. Phys. B 44:9 (1981).Google Scholar
  15. 15.
    R. Carmona, A. Klein, and F. Martinelli, Anderson localization for Bernoulli and other singular potentials,Commun. Math. Phys., to appear.Google Scholar
  16. 16.
    R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattachanja,Phys. Rev. Lett. 55:1768 (1985).Google Scholar
  17. 17.
    A. Bondeson, E. Ott, and T. Antonsen, Jr.,Phys. Rev. Lett. 55:2103 (1985).Google Scholar
  18. 18.
    M. Kohmoto, L. P. Kadanoff, and Chao Tang,Phys. Rev. Lett. 50:1870 (1983).Google Scholar
  19. 19.
    P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Electronic spectrum of one-dimensional quasi-crystals, Chernogolovka, Preprint (1986).Google Scholar
  20. 20.
    F. Delyon and D. Petritis,Commun. Math. Phys. 103:441–444 (1986).Google Scholar
  21. 21.
    E. I. Dinaburg and Ya. G. Sinai,Funct. Anal. Appl. 9:279 (1975).Google Scholar
  22. 22.
    E. D. Belokolos,Theor. Math. Phys. 25:176 (1975).Google Scholar
  23. 23.
    Ya. G. Sinai,Funct. Anal. Appl. 19:42 (1985).Google Scholar
  24. 24.
    H. Rüssmann,Ann. N. Y. Acad. Sci. 357:90 (1980).Google Scholar
  25. 25.
    J. Bellisard, R. Lima, and D. Testard,Commun. Math. Phys. 88:207 (1983).Google Scholar
  26. 26.
    J. Avron and B. Simon,Commun. Math. Phys. 82:101–120 (1982);Duke Math. J. 50:369–391 (1983);Bull. Am. Math. Soc. 6:81–86 (1982).Google Scholar
  27. 27.
    R. A. Johnson and J. Moser,Commun. Math. Phys. 84:403–438 (1982).Google Scholar
  28. 28.
    J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Preprint, ETH, Zürich (1983).Google Scholar
  29. 29.
    S. Aubry and G. André,Ann. Israel Phys. Soc. 3:133 (1980).Google Scholar
  30. 30.
    S. Aubry and P. Y. Le Daeron,Physica 8D:381–422 (1983).Google Scholar
  31. 31.
    B. Simon,Adv. Appl. Math. 3:463 (1982).Google Scholar
  32. 32.
    L. A. Pastur and A. L. Figotin,J. Math. Phys. 25:774 (1984).Google Scholar
  33. 33.
    L. A. Pastur and A. L. Figotin,Commun. Math. Phys. 95:401 (1984).Google Scholar
  34. 34.
    B. Simon,Ann. Phys. N. Y. 158:415 (1984).Google Scholar
  35. 35.
    J. Pöschel,Commun. Math. Phys. 88:447 (1983).Google Scholar
  36. 36.
    J. Bellisard, Stability and instability in quantum mechanics, Preprint, CNRS, Luminy (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Ya. G. Sinai
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations