Journal of Statistical Physics

, Volume 44, Issue 1–2, pp 249–271 | Cite as

Lattice gas generalization of the hard hexagon model. I. Star-triangle relation and local densities

  • R. J. Baxter
  • George E. Andrews
Articles

Abstract

In the solvable hard hexagon model there is at most one particle in every pair of adjacent sites, and the solution automatically leads to various mathematical identities, in particular to the Rogers-Ramanujan relations. These relations have been generalized by Gordon. Here we construct a solvable model with at most two particles per pair of adjacent sites, and find the solution involves the next of Gordon's relations. We conjecture the corresponding solution for a model with at mostn particles per pair of adjacent sites: this involves all Gordon's relations, as well as others that we will discuss in a subsequent paper.

Key words

Statictical mechanics lattice gas star-triangle relation Yang-Baxter relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Baxter,J. Phys. A.,13:L61 (1980);J. Stat. Phys. 26:427 (1981).Google Scholar
  2. 2.
    R. J. Baxter,Physica 106A:18 (1981).Google Scholar
  3. 3.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).Google Scholar
  4. 4.
    G. E. Andrews,The Theory of Partitions (Addison-Wesley, Reading, Massachusetts, 1976).Google Scholar
  5. 5.
    B. Gordon,Am. J. Math. 83:393 (1961).Google Scholar
  6. 6.
    V. V. Baxhanov and Yu G. Stroganov,Nucl. Phys. B205:505 (1982).Google Scholar
  7. 7.
    G. E. Andrews, R. J. Baxter, and P. J. Forrester,J. Stat. Phys. 35:193 (1984).Google Scholar
  8. 8.
    M. Jimbo and T. Miwa,Physica D15:335 (1985).Google Scholar
  9. 9.
    M. Jimbo and T. Miwa,Nucl. Phys. B257:l (1985).Google Scholar
  10. 10.
    M. P. Richey and C. A. Tracy, ZnBaxter Model: Symmetries and Belavin Parametrization; C. A. Tracy, ZnBaxter Model: Critical Behaviour.Google Scholar
  11. 11.
    R. J. Baxter,J. Stat. Phys. 28:1 (1982).Google Scholar
  12. 12.
    C. A. Tracy,Physica D14:253 (1985).Google Scholar
  13. 13.
    R. J. Baxter, inFundamental Problems in Statistical Mechanics V, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1980).Google Scholar
  14. 14.
    Y. G. Stroganov,Phys. Lett. 74A:116 (1979).Google Scholar
  15. 15.
    P. J. Forrester and R. J. Baxter,J. Stat. Phys. 38:435 (1985).Google Scholar
  16. 16.
    A. Kuniba, Y. Akutsu and M. Wadati,J. Phys. Soc. Jpn. 55:1092 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. J. Baxter
    • 1
  • George E. Andrews
    • 2
  1. 1.Research School of Physical SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Department of Mathematics, McAllister BuildingPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations