Methanol laser lines from torsionally excited co stretch states, and from OH-bend, CH3-rock, and CH3-deformation states

  • J. O. Henningsen
Article

Abstract

Using a quasi-CW CO2 oscillator-amplifier combination with peak power 300 Watt, we have generated FIR laser emission in weak absorption bands of CH3OH. 40 new lines are reported, and their wavelengths are measured with a relative accuracy of 5×10−5. A total of 72 lines are assigned. 34 of these involve torsional n=1, 2, and 3 states of the CO stretch and the vibrational ground state. The remaining lines are associated with the CH3-rock, OH-bend, and CH3-deformation modes. The latter are located 1460 cm−1 above the ground state, and are pumped by simultaneous vibrational excitation and torsional deexcitation.

Key Words

optically pumped far infrared laser CH3OH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Inguscio, F. Strumia, and J.O. Henningsen in “Reviews of Infrared and Millimeter Waves”, vol. 2 p. 105–150, Plenum Press (1984).13C18O2 results are in: J. C. Petersen and G. Duxbury, Appl. Phys. B34, 17–21 (1984).Google Scholar
  2. 2.
    J.O. Henningsen “Molecular Spectroscopy by Far Infrared Laser Emission”, ISBN 87-88318-06-0, Copenhagen (1984) (available from the author).Google Scholar
  3. 3.
    J.O. Henningsen, Int. J. Infrared and MM Waves 4, 707–732 (1983).Google Scholar
  4. 4.
    S. Petersen and J.O. Henningsen, Infrared Physics 26, 55–71 (1986).Google Scholar
  5. 5.
    R.M. Lees and J.G. Baker, J. Chem. Phys. 48, 5299–5318 (1968).Google Scholar
  6. 6.
    Y.Y. Kwan and D.M. Dennison, J. Mol. Spectrosc., 43, 291–319 (1972).Google Scholar
  7. 7.
    J.O. Henningsen, J. Mol. Spectrosc. 85, 282–300 (1981).Google Scholar
  8. 8.
    J.O. Henningsen, J. Mol. Spectrosc. 102, 399–415 (1983).Google Scholar
  9. 9.
    R.M. Lees, J. Chem. Phys. 57, 824–826 (1972).Google Scholar
  10. 10.
    W.H. Weber and P.D. Maker, J. Mol. Spectrosc., 93, 131–153 (1982).Google Scholar
  11. 11.
    J.C. Petersen and G. Duxbury, Appl. Phys. B 27, 19 (1982).Google Scholar
  12. 12.
    G. Duxbury, J.C. Petersen, H. Kato, and M.L.Le Lerre, J. Mol. Spectrosc. 107, 261 (1984).Google Scholar
  13. 13.
    R.M. Lees (private communication).Google Scholar
  14. 14.
    F. Dyubko, L.D. Fesenko, A.S. Shevyrov, and V.I. Yartsev, Kvant. Elektr. 8, 2048; Eng. Transl. Sov. J. Quantum Electron. 11, 1248 (1981).Google Scholar
  15. 15.
    B. Hartmann and L. Lindgren, Int. J. Infrared and Millimeter Waves, 3, 503–515 (1982).Google Scholar
  16. 16.
    A. Serrallach, R. Meyer, and Hs.H. Günthard, J. Mol. Spectrosc. 52, 94–129 (1974).Google Scholar
  17. 17.
    R.M. Lees, I. Mukhopadhyay, and J.W.C. Johns, Opt. Commun. 55, 127–130 (1985).Google Scholar
  18. 18.
    F.R. Petersen, K.M. Evenson, D.A. Jennings, and A. Scalabrin, IEEE J. Quantum Electron. QE-11, 838 (1980).Google Scholar
  19. 19.
    H. Sigg, H.J.A. Bluyssen, and P. Wyder, IEEE J. Quantum Electron. QE-20, 616 (1984).Google Scholar
  20. 20.
    G. Merkle and J. Heppner, Optics Commun. 51, 165 (1984).Google Scholar
  21. 21.
    D. Pereira and A. Scalabrin (private communication).Google Scholar
  22. 22.
    F. Tang and J.O. Henningsen, Int. Quantum Electron. Conf., 1986, San Francisco, paper TuBB5.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. O. Henningsen
    • 1
  1. 1.Physics Laboratory H. C. Ørsted InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations