Advertisement

High power non-linear magnetophotoconductivity in n-GaAs using the UCSB free electron laser

  • J. Kaminski
  • J. Spector
  • W. Prettl
  • M. Weispfenning
Article

Abstract

The kinetics of electrons bound to shallow donor impurities in n-GaAs was investigated by saturation spectroscopy using the University of California at Santa Barbara free electron laser. The resonant photothermal conductivity from 1s–2p+ transitions was measured at intensities greatly exceeding previous studies. Saturation of bound-to-free photoionization transitions was measured from 0 to 4 Tesla. The 1s–2p+ resonant photoconductive signal shows a distinct intensity dependence caused by the competing bound-to-free transitions which saturate differently. Evaluation of the electron recombination kinetics allows us to calculate the transition time of electrons from the 2p+ level to the ground state, the recombination time of free electrons, and the thermal ionization probability of the 2p+ state.

Keywords

Spectroscopy Recombination High Power Free Electron Transition Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Murotani and Y. Nishida, J. Phys. Soc. Jpn.32, 986 (1972).Google Scholar
  2. 2.
    E. Gornik, T.K. Chang, T.J. Bridges, V.T. Nguyen I. D. McGee, and W. Muller, Phys. Rev. Lett.40, 1151 (1978)Google Scholar
  3. 3.
    K. Muro, N. Yutani, and Sh. Narita, J. Phys. Soc. Jpn.49, 593 (1980).Google Scholar
  4. 4.
    C.R. Pidgeon, A. Vass, G.R. Allan, W., Prettl and L.A Eaves, Phys. Rev. Lett.50, 1309 (1983).Google Scholar
  5. 5.
    W. Prettl, A. Vass, G.R. Allan, and C.R. Pidgeon, Int. J. Infrared and Millimeter Waves4, 561 (1983)Google Scholar
  6. 6.
    G.R. Allan, A. Black, C.R. Pidgeon, E. Gornik, W. Seidenbusch, and P. Colter, Phys. Rev.B31 3560 (1985)Google Scholar
  7. 7.
    M. Weisspfenning, I. Hoeser, W. Bohm, W. Prettl, Phys. Rev. Lett.55, 754 (1985).Google Scholar
  8. 8.
    L. Elias, G. Ramian, J. Hu, and A. Amir, Phys. Rev. Lett.,57, 424 (1986).Google Scholar
  9. 9.
    E. Scholl, W. Heisel, and W. Prettl, Z. Phys.B47, 287 (1982).Google Scholar
  10. 10.
    C.J. Armistead, P. Knowles, S.P. Najda, and R.A. Stradling, J. Phys.C17, 6415 (1984).Google Scholar
  11. 11.
    J. Simola and J. Virtamo, J. Phys.B11, 3309 (1978)Google Scholar
  12. 12.
    W.S. Boyle and R.E. Howard, J. Phys. Chem. Solids19 181 (1961)Google Scholar
  13. 13.
    J. Shah, Solid State Electron.21, 43 (1978)Google Scholar
  14. 14.
    K. Moser and W. Prettl, Int. J. Infrared and Millimeter Waves7, 147 (1986)Google Scholar
  15. 15.
    H. Hasegawa and R.E. Howard, J. Phys. Chem. Solids21, 179 (1961)Google Scholar
  16. 16.
    FIR from the FEL was switched off by irradiating a normally FIR transparent Si wafer with a high power Nd: YAG laser. The wafer is made totally reflecting in ≈10 nsec.Google Scholar
  17. 17.
    F. Brown, A. Adamson, and P.A. Wolff, Int. J. Infrared and Millimeter Waves1, 277 (1980)Google Scholar
  18. 18.
    V.N. Zverev and D.V. Shovkun, Sov. Phys. JETP60, 1003 (1984)Google Scholar
  19. 19.
    J.M. Chamberlain, A.A. Reeder, L.M. Claesen, G.L.J.A. Rikken, and P. Wyder, Phys. Rev.B31, 2391 (1987)Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • J. Kaminski
    • 1
  • J. Spector
    • 1
  • W. Prettl
    • 2
  • M. Weispfenning
    • 2
  1. 1.Department of Physics and Center for Free Electron Laser StudiesUniversity of CaliforniaSanta Barbara
  2. 2.Institut fur Angewandte Physik der Universitat RegensburgRegensburgWest Germany

Personalised recommendations