Journal of Statistical Physics

, Volume 43, Issue 1–2, pp 219–242 | Cite as

Global properties of cellular automata

  • Erica Jen


Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperiodic temporal sequences is defined, as is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of “nearest-neighbor” rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence.

Key words

Cellular automata discrete dynamical systems local interactions deterministic structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Anderson,IEEE Trans. SMC 13:799 (1983).Google Scholar
  2. 2.
    D. Farmer, T. Toffoli, and S. Wolfram, eds., “Cellular Automata: Proceedings of an Interdisciplinary Workshop,”Physica 10D (1–2) (1984).Google Scholar
  3. 3.
    U. Frisch, B. Hasslacher, and Y. Pomeau, “A Lattice Gas Automaton for the Navier-Stokes Equation” (preprint).Google Scholar
  4. 4.
    G. Hedlund,Math. Systems Theory 3:320 (1969).Google Scholar
  5. 5.
    E. Jen,J. Stat. Phys. 43:243 (1986).Google Scholar
  6. 6.
    D. A. Lind, Reference (3).Google Scholar
  7. 7.
    O. Martin, A. Odlyzko, and S. Wolfram,Comm. Math. Phys. 93:219 (1984).Google Scholar
  8. 8.
    J. Milnor, “Entropy of Cellular Automaton-Maps,” Institute for Advanced Study preprint (May 1984).Google Scholar
  9. 9.
    J. Milnor, “Notes on Surjective Cellular Automaton-Maps,” Institute for Advanced Study preprint (June 1984).Google Scholar
  10. 10.
    N. Packard, “Deterministic Lattice Models for Solidification and Aggregation” (preprint).Google Scholar
  11. 11.
    N. Packard, “Complexity of Growing Patterns in Cellular Automata” (preprint).Google Scholar
  12. 12.
    T. Toffoli, Reference (3).Google Scholar
  13. 13.
    J. von Neumann,Theory of Self-Reproducing Automata, A. W. Burks, ed. (Univ. Illinois Press, Urbana, 1966).Google Scholar
  14. 14.
    M. S. Waterman, Reference (3).Google Scholar
  15. 15.
    S. Wolfram,Rev. Mod. Phys. 55:601 (1983).Google Scholar
  16. 16.
    S. Wolfram,Physica 10D:1 (1984).Google Scholar
  17. 17.
    S. Wolfram,Los Alamos Science (Fall 1983).Google Scholar
  18. 18.
    S. Wolfram,Comm. Math. Phys. 96:15 (1984).Google Scholar
  19. 19.
    S. Wolfram,Phys. Rev. Lett. 55:449 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Erica Jen
    • 1
  1. 1.Center for Nonlinear StudiesLos Alamos National LaboratoryLos Alamos

Personalised recommendations