Journal of Statistical Physics

, Volume 42, Issue 5–6, pp 727–742 | Cite as

Nonintersecting string model and graphical approach: Equivalence with a Potts model

  • J. H. H. Perk
  • F. Y. Wu


Using a graphical method we establish the exact equivalence of the partition function of aq-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced, lattice with that of a q2-state Potts model on a related lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagomé lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition forq > 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model we discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases.

Key words

Nonintersecting string model Potts model vertex model graphical approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).Google Scholar
  2. 2.
    E. H. Lieb,Phys. Rev. Lett. 18:692, 1046 (1967);Phys. Rev. Lett. 19:108 (1967); B. Sutherland,Phys. Rev. Lett. 19:103 (1967); C. P. Yang,Phys. Rev. Lett. 19:586 (1967); B. Sutherland, C. N. Yang, and C. P. Yang,Phys. Rev. Lett. 19:588 (1967).Google Scholar
  3. 3.
    S. B. Kelland,Aust. J. Phys. 27:813 (1974).Google Scholar
  4. 4.
    R. J. Baxter,Ann. Phys. (N.Y.) 70:193 (1972).Google Scholar
  5. 5.
    R. J. Baxter,J. Phys. C 6:L445 (1973).Google Scholar
  6. 6.
    R. J. Baxter, H. N. V. Temperley, and S. E. Ashley,Proc. R. Soc. London Ser. A 358:535 (1978).Google Scholar
  7. 7.
    J. H. H. Perk and C. L. Schultz, inNon-Linear Integrable Systems—Classical Theory and Quantum Theory, Proc. RIMS Symposium, M. Jimbo and T. Miwa, eds. (World Scientific, Singapore, 1983).Google Scholar
  8. 8.
    Yu. G. Stroganov,Phys. Lett. 74A:116 (1979).Google Scholar
  9. 9.
    C. L. Schultz,Phys. Rev. Lett. 46:629 (1981).Google Scholar
  10. 10.
    J. H. H. Perk and C. L. Schultz,Phys. Lett. 84A:407 (1981).Google Scholar
  11. 11.
    J. H. H. Perk and C. L. Schultz,Physica 122A:50, (1983).Google Scholar
  12. 12.
    C. L. Schultz, Ph. D. dissertation (State University of New York, Stony Brook, 1982).Google Scholar
  13. 13.
    R. J. Baxter,J. Stat. Phys. 28:1 (1982).Google Scholar
  14. 14.
    J. H. H. Perk and F. Y. Wu,Physica A (in press).Google Scholar
  15. 15.
    E. H. Lieb and F. Y. Wu, inCritical Phenomena and Phase Transitions, Vol. I, C. Domb and M. S. Green, eds. (Academic, London, 1972), p. 331.Google Scholar
  16. 16.
    F. Y. Wu,Phys. Rev. B4:2312 (1971).Google Scholar
  17. 17.
    L. P. Kadanoff and F. J. Wegner,Phys. Rev. B4:3989 (1971).Google Scholar
  18. 18.
    R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A9:397 (1976).Google Scholar
  19. 19.
    F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).Google Scholar
  20. 20.
    F. Y. Wu and K. Y. Lin,J. Phys. A13:629 (1980).Google Scholar
  21. 21.
    H. N. V. Temperley and E. H. Lieb,Proc. R. Soc. London Ser. A 322:251 (1971).Google Scholar
  22. 22.
    F. Y. Wu,J. Appl. Phys. 55:2421 (1984).Google Scholar
  23. 23.
    A. Hintermann, H. Kunz, and F. Y. Wu,J. Stat. Phys. 19:623 (1978).Google Scholar
  24. 24.
    F. Y. Wu and R. K. P. Zia,J. Phys. A14:721 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. H. H. Perk
    • 1
  • F. Y. Wu
    • 2
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony Brook
  2. 2.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations