Far-infrared microbolometer detectors

  • D. P. Neikirk
  • Wayne W. Lam
  • D. B. Rutledge
Article

Abstract

The bismuth microbolometer is a simple, easily made detector suitable for use throughout the far-infrared, which has been integrated with a variety of planar antennas. The general thermal properties of these devices and some of the constraints on bolometer materials are discussed. The fabrication and performance of several different types of microbolometers and microthermocouples are described.

Key words

bolometers far-infrared detectors integrated detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clifton, B.J., G.D. Alley, R.A. Murphy, and I.H. Mroczkowski, ‘High-performance quasi-optical GaAs monolithic mixer at 110GHz,’ IEEE Trans. Electron Devices28, 155 (1981).Google Scholar
  2. [2]
    Parrish, P.T., T.C.L.G. Sollner, R.H. Matthews, H.R. Fetterman, C.D. Parker, P.E. Tannenwald, and A.G. Cardiasmenos, ‘Printed dipole-Schottky diode millimeter wave antenna array,’ SPIE Proceedings Vol. 337, Millimeter Wave Technology, May 6–7, 1982.Google Scholar
  3. [3]
    Yao, C., S.E. Schwarz, and B.J. Blumenstock, ‘Monolithic integration of a dielectric millimeter-wave antenna and mixer diode: an embrionic millimeter-wave IC,’ IEEE Trans. Microwave Theory Tech.30, 1241 (1982).Google Scholar
  4. [4]
    Brewitt-Taylor, C.R., D.J. Gunton, and H.D. Rees, ‘Planar antennas on a dielectric surface,’ Electron Lett.17, 729 (1981).Google Scholar
  5. [5]
    Engheta, N., C.H. Papas, and C. Elachi, ‘Radiation patterns of interfacial dipole antennas,’ Radio Science17, 1557 (1982).Google Scholar
  6. [6]
    Rutledge, D.B., D.P. Neikirk, and D.P. Kasilingam, ‘Integrated-Circuit Antennas,’ inInfrared and Millimeter Waves, Vol. 10 (K.J. Button, ed., Academic Press, New York, 1983).Google Scholar
  7. [7]
    Neikirk, D.P., and D.B. Rutledge, ‘Airbridge microbolometer for far-infrared detection,’ submitted for publication, Appl. Phys. Lett.Google Scholar
  8. [8]
    Hwang, T.-L., S.E. Schwarz, and D.B. Rutledge, ‘Microbolometers for infrared detection,’ Appl. Phys. Lett.34, 773 (1979).Google Scholar
  9. [9]
    Neikirk, D.P., and D.B. Rutledge, ‘Self-heated thermocouples for far-infrared detection,’ Appl. Phys. Lett.41, 400 (1982).Google Scholar
  10. [10]
    Ashcroft, N.W., and N.D. Mermin,Solid State Physics, (Holt, Rinehart, and Winston, New York, 1976), p. 255.Google Scholar
  11. [11]
    Smith, R.A., F.E. Jones, and R.P. Chasmar,The Detection and Measurement of Infrared Radiation (Oxford University Press, London, 1968), p. 85.Google Scholar
  12. [12]
    Colombani, A., and P. Huet, ‘Electromagnetic properties of thin films of bismuth,’ International Conference on Structure and Properties of Thin Films, Bolton Landing, N.Y., 1959, (C.A. Neugebauer, J.B. Newkirk, and D.A. Vermilyea, eds., Wiley, New York, 1959).Google Scholar
  13. [13]
    Komnik, Yu. F., E. Bukhshtab, Yu. Nikitin, and V. Andrievskii, ‘Features of temperature dependence of the resistance of thin bismuth films,’ Zh. Eksp. Teor. Fiz.60, 669 (1971).Google Scholar
  14. [14]
    Abrosimov, V., B. Egorov, and M. Krykin, ‘Size effect of kinetic coefficients in polycrystalline bismuth films,’ Zh. Eksp. Teor. Fiz.64, 217 (1973).Google Scholar
  15. [15]
    Kawazu, A., Y. Saito, H. Asahi, and G. Tominaga, ‘Structure and electrical properties of thin bismuth films,’ Thin Solid Films37, 261 (1976).Google Scholar
  16. [16]
    Joglekar, A., R. Karekar, and K. Sathianandan, ‘Electrical resistivity of polycrystalline bismuth films,’ J. Vac. Sci. Technol.11, 528 (1974).Google Scholar
  17. [17]
    Dolan, G., ‘Offset masks for lift-off photoprocessing,’ Appl. Phys. Let.,31, 337 (1977).Google Scholar
  18. [18]
    Dunkleberger, L., ‘Stencil technique for the preparation of thin-film Josephson devices,’ J. Vac. Sci. Technol.,15, 88 (1978).Google Scholar
  19. [19]
    Neikirk, D.P., ‘Integrated detector arrays for high resolution far-infrared imaging,’ PhD thesis. California Institute of Technology, 1983.Google Scholar
  20. [20]
    Tong, P.P., D.P. Neikirk, P.E. Young, W.A. Peebles, N.C. Luhmann, and D.B. Rutledge, ‘Imaging polarimeter arrays for near-millimeter waves,’ to be published.Google Scholar
  21. [21]
    Dolan, G.J., T.G. Phillips, and D.P. Woody, ‘Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions,’ Appl. Phys. Lett.34, 347 (1979).Google Scholar
  22. [22]
    Danchi, W.C., F. Habbal, and M. Tinkham, ‘ac Josephson effect in small area superconducting tunnel junctions at 604GHz,’ Appl. Phys. Lett.41, 883 (1982).Google Scholar
  23. [23]
    Neikirk, D.P., P.P. Tong, D.B. Rutledge, H. Park, and P.E. Young, ‘Imaging antenna array at 119μm,’ Appl. Phys. Lett.41, 329 (1982).Google Scholar
  24. [24]
    Du Pont Co., ‘Pyralin: polyimide coatings for electronics,’ Bulletin PC-1.Google Scholar
  25. [25]
    Dobkin, D.M., and B.D. Cantos, ‘Plasma formation of buffer layers for multilayer resist structures,’ IEEE Electron Devices Lett.EDL-2, 222 (1981).Google Scholar
  26. [26]
    Smith, R.A., F.E. Jones, and R.P. Chasmar,The Detection and Measurement of Infrared Radiation (Oxford University Press, London, 1968), pp. 211–213.Google Scholar
  27. [27]
    Jelks, E.C., R.M. Walser, R.W. Bene, and W.H. Neal II, ‘Response of thermal filaments in VO2 to laser-produced thermal perturbations,’ Appl. Phys. Lett.26, 355 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • D. P. Neikirk
    • 1
  • Wayne W. Lam
    • 1
  • D. B. Rutledge
    • 1
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadena
  2. 2.Dept. of Electrical EngineeringUniversity of Texas at AustinAustin

Personalised recommendations