Journal of Statistical Physics

, Volume 21, Issue 4, pp 465–494 | Cite as

On the Hénon-Pomeau attractor

  • Carles Simó


The behavior of the iterates of the mapT(x, y) = (1+yax2,bx) can be useful for the understanding of turbulence. In this study we fix the value ofb at 0.3 and allowa to take values in a certain range. We begin with the study of the casea=1.4, for which we determine the existence of a strange attractor, whose region of attraction and Hausdorff dimension are obtained. As we changea, we study numerically the existence of periodic orbits (POs) and strange attractors (SAs), and the way in which they evolve and bifurcate, including the computation of the associated Lyapunov numbers. Several mechanisms are proposed to explain the creation and disappearance of SAs, the basin of attraction of POs, and the cascades of bifurcations of POs and of SAs for increasing and decreasing values ofa. The role of homoclinic and heteroclinic points is stressed.

Key words

Hénon-Pomeau attractor evolution of strange attractors Hausdorff dimension Lyapunov numbers numerical experiments homoclinic and heteroclinic points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Transformations ponctuelles et leurs applications (CNRS Colloque 229; Toulouse, Septembre 1973; Editions du CNRS, 1976).Google Scholar
  2. 2.
    B. V. Chirikov and F. M. Izraelev, Some numerical experiments with a nonlinear mapping: stochastic component, in Ref. 1, pp. 409–428.Google Scholar
  3. 3.
    J. H. Curry, On the Hénon Transformation, preprint (1978).Google Scholar
  4. 4.
    J. H. Curry and J. A. Yorke, inLecture Notes in Math., No. 668 (Springer, 1978), pp. 48–66.Google Scholar
  5. 5.
    S. D. Feit,Commun. Math. Phys. 61:249 (1978).Google Scholar
  6. 6.
    J. Guckenheimer,Inventiones Math. 39:165 (1977).Google Scholar
  7. 7.
    M. Hénon and Y. Pomeau, inLecture Notes in Math., No. 565 (Springer, 1976), pp. 29–68.Google Scholar
  8. 8.
    J. P. Kahane, inLecture Notes in Math., No. 565 (Springer, 1976), pp. 94–103.Google Scholar
  9. 9.
    A. Lasota and J. A. Yorke,Trans. Am. Math. Soc. 186:481 (1973).Google Scholar
  10. 10.
    T. Y. Li and J. A. Yorke, inDynamical Systems, L. Cesariet al., eds. (Academic, 1976), Vol.II, pp. 203–206.Google Scholar
  11. 11.
    E. N. Lorenz,J. Atmos. Sci. 20: 130 (1963).Google Scholar
  12. 12.
    R. M. May and G. F. Oster,Am. Naturalist 110:573 (1976).Google Scholar
  13. 13.
    S. E. Newhouse,Topology 12:9 (1974).Google Scholar
  14. 14.
    Ya. B. Pesin,Russian Math. Surveys 32:55 (1977).Google Scholar
  15. 15.
    C. Simó, Atractores extraños, variedades invariantes y dimension Hausdorff,Jornadas Matemáticas Luso-Espanholas, Aveiro (Portugal) (March 1978), to appear.Google Scholar
  16. 16.
    S. Smale,Bull. Am. Math. Soc. 73:747 (1967).Google Scholar
  17. 17.
    P. Štefan,Commun. Math. Phys. 54:237 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Carles Simó
    • 1
  1. 1.Facultat de MatemàtiquesUniversitat de BarcelonaSpain

Personalised recommendations