Advertisement

Journal of Statistical Physics

, Volume 34, Issue 5–6, pp 863–870 | Cite as

The Ising model in a random magnetic field

  • Daniel S. Fisher
  • Jürg Fröhlich
  • Thomas Spencer
Articles

Abstract

The existence of a spontaneous magnetization in the three-dimensional Ising model in a weak random magnetic field (RFIM) is investgated. Following Imry and Ma, we consider the energy change, ΔEγ, from the fully aligned ferromagnetic state caused by flipping all the spins inside a connected surface, γ. It is proved rigorously that with high probability, ΔEγ is positive forall γ enclosing the origin. Under the unproven assumption that the expectation value of the spin at one site is weakly correlated with the random fields at far away sites (which is true if surfaces within surfaces can be ignored) it follows that the three-dimensional RFIM has a spontaneous magnetization at low temperatures. The proof works for all dimensions greater than two, providing support for the conjecture that two is the lower critical dimension.

Key words

Domain wall ferromagnetic order random field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Fishman and A. Aharony,J. Phys. C. Solid State Phys. 12:L729 (1979).Google Scholar
  2. 2.
    H. Yoshisawaet al, Phys. Rev. Lett. 48:438 (1983); M. Hagenet al submitted toPhys. Rev. B.Google Scholar
  3. 3.
    A. C. Tayatakes,Ann. Rev. Fluid Mech. 14:365 (1982).Google Scholar
  4. 4.
    J. Villain,J. Phys. (Paris)Lett. 43:L551 (1982).Google Scholar
  5. 5.
    A. Aharony, Y. Imry, and S. Ma,Phys. Rev. Lett. 37:1364 (1976).Google Scholar
  6. 6.
    G. Grinstein,Phys. Rev. Lett. 49:685 (1982).Google Scholar
  7. 7.
    A. P. Yong,J. Phys. C. Solid State Phys. 10:L257 (1977).Google Scholar
  8. 8.
    E. Pytte, Y. Imry, and D. Mukamel,Phys. Rev. Lett. 46:1173 (1981); H. J. Kogon and D. Wallace,J. Phys. A 14:L527 (1981).Google Scholar
  9. 9.
    R. J. Birgeneau,et al, Phys. Rev. B 28:1438 (1983); D. P. Belanger, A. R. King, and V. Jaccarino,Phys. Rev. Lett. 48:1050 (1982); D. P. Belangeret al submitted toPhys. Rev. B. Google Scholar
  10. 10.
    G. Parisi and N. Sourlas,Phys. Rev. Lett. 43:744 (1979).Google Scholar
  11. 11.
    J. L. Cardy,Phys. Lett. 125B:470 (1983).Google Scholar
  12. 12.
    A. Klein and J. F. Perez,Phys. Lett. 125B:473 (1983).Google Scholar
  13. 13.
    Y. Imry and S. Ma,Phys. Rev. Lett. 35:1399 (1975).Google Scholar
  14. 14.
    G. Grinstein and S. Ma,Phys. Rev. Lett. 49:685 (1982).Google Scholar
  15. 15.
    J. Chalker, Heidelberg, Preprint to appear inJ. Phys. C. Google Scholar
  16. 16.
    R. Griffiths,Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. Green, eds. (Academic Press, London, 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Daniel S. Fisher
    • 1
  • Jürg Fröhlich
    • 2
  • Thomas Spencer
    • 3
  1. 1.Bell LaboratoriesMurray Hill
  2. 2.Theoretical PhysicsETH-HönggerbergZurichSwitzerland
  3. 3.Courant InstituteNew York UniversityNew York

Personalised recommendations