Journal of Statistical Physics

, Volume 47, Issue 1–2, pp 265–288 | Cite as

Hydrodynamic equations for attractive particle systems on ℤ

  • Enrique Daniel Andjel
  • Maria Eulália Vares


Hydrodynamic properties for a class of nondiffusive particle systems are investigated. The method allows one to study local equilibria for a class of asymmetric zero-range processes, and applies as well to other models, such as asymmetric simple exclusion and “misanthropes.” Attractiveness is an essential ingredient. The hydrodynamic equations present shock wave phenomena. Preservation of local equilibrium is proven to hold away from the shocks. The problem of breakdown of local ergodicity at the shocks, which was investigated by D. Wick in a particular model, remains open in this more general setup.

Key words

Infinite-particle system attractiveness coupling hydrodynamic equation zero-range process conservation law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Andjel, Invariant measures for the zero range process,Ann. Prob. 10:525–547 (1982).Google Scholar
  2. 2.
    E. D. Andjel, Convergence to a non extremal equilibrium measure in the exclusion process,Probab. Th. Rel. Fields 73:127–134 (1986).Google Scholar
  3. 3.
    E. D. Andjel and C. Kipnis, Derivation of the hydrodynamical equation for the zero range interaction process,Ann. Prob. 12:325–334 (1984).Google Scholar
  4. 4.
    A. Benassi and J. P. Fouque, Hydrodynamical limit for the simple asymmetric exclusion process,Ann. Prob., to appear.Google Scholar
  5. 5.
    C. T. Cocozza, Processus des misanthropes,Z. Wahrs. Verw. Gebiete 70:509–523 (1985).Google Scholar
  6. 6.
    A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many particle systems, inStudies in Statistical Mechanics, Vol. 11,Non Equilibrium Phenomena II, from Stochastics to Hydrodynamics (North-Holland, Amsterdam, 1984).Google Scholar
  7. 7.
    A. Galves and E. Presutti, Edge fluctuations for the one dimensional supercritical contact process, Preprint IHES (1985).Google Scholar
  8. 8.
    R. Holley, A class of interaction in an infinite particle system,Adv. Math. 5:291–309 (1970).Google Scholar
  9. 9.
    P. Lax, The formation and decay of shock waves,Am. Math. Monthly (March):227–241 (1972).Google Scholar
  10. 10.
    T. M. Liggett, An infinite particle system with zero range interactions,Ann. Prob. 1:240–253 (1973).Google Scholar
  11. 11.
    T. M. Liggett, Ergodic theorems for the asymmetric exclusion process,Trans. Am. Math. Soc. 213:237–261 (1975).Google Scholar
  12. 12.
    T. M. Liggett, Ergodic theorems for the asymmetric exclusion process II,Ann. Prob. 5:795–801 (1977).Google Scholar
  13. 13.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, 1984).Google Scholar
  14. 14.
    C. Morrey, On the derivation of the equations of hydrodynamics from statistical mechanics,Commun. Pure Appl. Math. 8:279 (1955).Google Scholar
  15. 15.
    E. Presutti,Collective Phenomena in Stochastic Particle Systems. Proceedings of the BIBOS Conference (1985).Google Scholar
  16. 16.
    H. Rost, Non-equilibrium behavior of a many particle process: density profile and local equilibria,Z. Wahrs. Verw. Gebiete 58:41–53 (1981).Google Scholar
  17. 17.
    J. Smoller,Shock Waves and Reaction-Diffusion Equations (Springer, 1983).Google Scholar
  18. 18.
    D. Wick, A dynamical phase transition in an infinite particle system,J. Stat. Phys. 38:1015–1025 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Enrique Daniel Andjel
    • 1
  • Maria Eulália Vares
    • 1
  1. 1.Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil

Personalised recommendations