Journal of Statistical Physics

, Volume 21, Issue 2, pp 103–123 | Cite as

Series expansions from corner transfer matrices: The square lattice Ising model

  • R. J. Baxter
  • I. G. Enting


The corner transfer matrix formalism is used to obtain low-temperature series expansions for the square lattice Ising model in a field. This algebraic technique appears to be far more efficient than conventional methods based on combinatorial enumeration.

Key words

Lattice models series expansions corner transfer matrices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Baxter,J. Stat. Phys. 19:461 (1978).Google Scholar
  2. 2.
    M. F. Wortis, inPhase Transitions and Critical Phenomena C. Domb and M. S. Green, eds. (Academic, 1974), Chapter 3.Google Scholar
  3. 3.
    R. J. Baxter,J. Math. Phys. 9:650 (1968).Google Scholar
  4. 4.
    H. A. Kramers and G. H. Wannier,Phys. Rev. 60:263 (1941).Google Scholar
  5. 5.
    R. J. Baxter,J. Stat. Phys. 15:485 (1976).Google Scholar
  6. 6.
    R. J. Baxter,J. Stat. Phys. 17:1 (1977).Google Scholar
  7. 7.
    M. F. Sykes, D. S. Gaunt, and S. R. Mattingly,J. Math. Phys. 14:1066 (1973).Google Scholar
  8. 8.
    S. K. Tsang,J. Stat. Phys. 20:95 (1979).Google Scholar
  9. 9.
    L. Onsager,Phys. Rev. 65:117 (1944).Google Scholar
  10. 10.
    C. Domb,Advan. Phys. 9:149 (1960).Google Scholar
  11. 11.
    T. D. Lee and C. N. Yang,Phys. Rev. 87:410 (1952).Google Scholar
  12. 12.
    B. M. McCoy and T. T. Wu,Phys. Rev. 155:438 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • R. J. Baxter
    • 1
  • I. G. Enting
    • 1
  1. 1.Research School of Physical SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations