Investigations of optically pumped submillimeter wave laser modes

  • H. P. Röser
  • M. Yamanaka
  • R. Wattenbach
  • G. V. Schultz
Article

Abstract

A complete theory for waveguide laser modes for oversized metallic and dielectric waveguides with circular cross section has been developed for the submm wavelength region. The experimental investigations have been done by a submm heterodyne technique for the first stage using a Schottky barrier diode in an open structure mixer.

Key words

submm waveguide laser laser modes heterodyne system HCOOH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yamanaka, Y. Homma, A. Tanaka, M. Takada, A. Tanimoto, H. Yoshinaga On the Transverse Mode in an Optically Pumped FIR NH3 Laser. Jap. J. Appl. Phys. Vol. 13, No. 5 (1974)Google Scholar
  2. 2.
    M. Yamanaka, H. Yoshinaga Compact Waveguide lasers in the Submm and MM Wave Region Conf. Digest, Int. Conf. Submm Waves and their Applications (Atlanta, USA, June 1974) IEEE Trans. Microwave Theory Tech. Vol. MTT-22 (Dec. 1974)Google Scholar
  3. 3.
    H.P. Röser, E. Sauter, G.V. Schultz Determination of Schottky Diode Mixer Conversion Losses in the Submm Wave length Range AGARD/NATO Symposium on MM and Submm-Wave Propagation and Circuits, (Sept. 1978) (München, Germany), AGARD Conf. Proc. Nr. 245Google Scholar
  4. 4.
    H.P. Röser Die Entwicklung eines optisch gepumpten Submm Lasers als lokaler Oszillator in einem Heterodyn System Ph. D. Thesis (1979) Max-Planck-Institute for Radioastronomy, BonnGoogle Scholar
  5. 5.
    D.T. Hodges, T.S. hartwick Waveguide Laser for the FIR Pumped by a CO2 Laser Appl. Phys. Lett. Vol. 23, No. 5 (1973)Google Scholar
  6. 6.
    T.A. De Temple, E.J. Danielewicz Continuous-Wave CH3F Waveguide Laser at 496 μm: Theory and Experiment IEEE J., QE Vol. QE-12, No. 1 (1976)Google Scholar
  7. 7.
    G.A. Koepf, H.R. Fetterman, N. McAvoy A Stable Submm Laser Local Oscillator for Heterodyne Radiometry and Spectroscopy Int. J. IR and MM Waves Vol. 1, No. 4 (Dec. 1980)Google Scholar
  8. 8.
    M.S. Tobin Michelson Output Coupler with 1-Dimensional Grid for an Optically Pumped Near Millimeter Laser VI. Int. Conf. on IR and MM-Waves (Dec. 1979) Miami, USAGoogle Scholar
  9. 9.
    H. Kogelnik, T. Li Laser Beams and Resonators Appl. Opt. Vol. 5, p. 1550 (1966)Google Scholar
  10. 10.
    H. Kogelnik, T. Li Laser Beams and Resonators Proc. IEEE 54, No. 10 (1966)Google Scholar
  11. 11.
    H. Kogelnik An Introduction to Integrated Optics IEEE Trans. MTT-23, 2 (1975)Google Scholar
  12. 12.
    E.A.J. Marcatili, R.A. Schmeltzer Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers Bell Syst. Techn. J. Vol. 43, 1783 (1964)Google Scholar
  13. 13.
    E. Garmire, T. Mc Mahon, M. Bass Propagation of IR Light in Flexible Hollow Waveguides Appl. Opt. Vol. 15, 145, (1976)Google Scholar
  14. 14.
    E. Garmire, T. Mc Mahon, M. Bass Propagation of IR Light in Flexible Hollow Waveguides Appl. Phys. Lett. Vol. 29, 254 (1976)Google Scholar
  15. 15.
    E. Garmire, T. Mc Mahon, M. Bass Flexible IR Waveguides for High Power Transmission IEEE QE-16, No. 1 (1980)Google Scholar
  16. 16.
    J.J. Degnan The Waveguide Laser: A Review Appl. Phys. 11, 1–33 (1976)Google Scholar
  17. 17.
    D.J. Harris Waveguides for the 100–1000 GHz Frequency Range Radio and Electr. Eng. Vol. 49, No. 7/8 (1979)Google Scholar
  18. 18.
    F.K. Kneubühl, E. Affolter IR and Submm Wave Waveguides IR and MM Waves, Vol. 1, edited by K.J. Button Academic Press (1980)Google Scholar
  19. 19.
    P. Schwaller, H. Steffen, J.F. Moser, F.K. Kneubühl Interpherometry for Resonator Modes in Submm Wave Lasers Appl. Opt. Vol. 6, No. 5 (1976)Google Scholar
  20. 20.
    H. Steffen, F.K. Kneubühl Resonator Interferometry of Pulsed Submillimeter-Wave Lasers IEEE J. Qu. Electr. QE-4, 992 (1968)Google Scholar
  21. 21.
    M.R. Schubert, M. Durschlag, T.A. De Temple Diffraction Limited CW Optically Pumped Lasers II. Int. Conf. on IR and Submm Waves, San Juan (1976)Google Scholar
  22. 22.
    E.J. Danielewicy, T.K. Plant, T.A. De Temple Hybrid Output Mirror for Optically Pumped FIR Lasers Opt. Com. Vol. 13, No. 4 (1975)Google Scholar
  23. 23.
    A. Morimaga Polarization study of an internal mirror CW 28 μm water vapour laser Appl. Opt. Vol. 20, No. 14, pp. 2395–2399 (1981)Google Scholar
  24. 24.
    S. Ramo, J.R. Whimery, T. Van Duzer Fields and Waves in Communication Electronics John Wiley & Sons (1975)Google Scholar
  25. 25.
    J.P. Crenn A Study of Waveguides for FIR Interferometers Measuring Electron Density of Tokamak Plasmas IEEE Vol. MTT-27, No. 6 (1979)Google Scholar
  26. 26.
    E. J. Danielewicz FIR Guided Wave Optics Experiments Using a Waveguide Laser with a Hybrid Output Mirror Ph. D. Thesis, University of Illinois, Urbanan (1976)Google Scholar
  27. 27.
    H.P. Röser, R. Wattenbach, G.V. Schultz Determination of Laser Frequencies by Mixing Experiments with two Submm Lasers to be publishedGoogle Scholar
  28. 28.
    Molectron Pyroelectric Detectors Pl-SeriesGoogle Scholar
  29. 29.
    M.F. Kimmitt, A.O. Koohian, H.P. Röser Photon Drag Reference Detectors Conf. Digest of V. Int. Conf. IR and MM Waves (Würzburg, Germany) (1980)Google Scholar
  30. 30.
    M.F. Kimmitt, A.A. Serafetinides, H.P. Röser, D.A. Huckridge Submm Performance of Photon-Drag Detectors Inf. Phys. Vol. 18, 674 (1978)Google Scholar
  31. 31.
    B. Vowinkel Broad-Band Calorimeter for Precision Measurement of MM and Submm Wave Power IEEE Vol. TM-29, No. 3 (Sept. 1980Google Scholar
  32. 32.
    B. Vowinkel, H.P. Röser Precision Measurement of Power at MM and Submm Wavelength J. IR and MM Waves Vol. 3, No. 4 (1982)Google Scholar
  33. 33.
    E. Sauter, G.V. Schultz Comparison of Methods for Sensitivity Determination of Point-Contact Diodes at Submm Wavelength IEEE Vol. MTT-25, No. 6Google Scholar
  34. 34.
    P.E. Tannenwald FIR Heterodyne Detectors J. IR and MM Waves Vol. 1, No. 2 (1980)Google Scholar
  35. 35.
    P.E. Tannenwald Advances in GaAs Schottky Diode Submm Heterodyne Receivers and Radiometers AGARD/NATO Symposium on MM and Submm Wave Propagation and Circuits, AGARD Conf. Proc. No. 245 (Sept. 1978)Google Scholar
  36. 36.
    H. Kräutle, E. Sauter, G.V. Schultz Antenna Characteristics of Whisker Diodes used as Submm Receivers Inf. Phys. Vol. 17, No. 6 (1977)Google Scholar
  37. 37.
    G.V. Schultz, E. Sauter, H.P. Röser, W. Reinert Experiments for Sensitivity Enhancement of a Heterodyne Detection System at Submm Wavelength Conf. Digest VI. Int. Conf. on IR and MM Waves (Miami, USA) (Dec. 1979)Google Scholar
  38. 38.
    H.P. Röser, G.V. Schultz, R. Wattenbach Submm Heterodyne Observations of the Sun, Moon, Jupiter and Orion at 691 GHz IEEE, Int. Conf. on IR and MM Waves (Florida-USA) (Dec. 1981)Google Scholar
  39. 39.
    R. Wattenbach, H.P. Röser, G.V. Schultz A Microprocessor Stabilized Submm Laser System to be published in IR and MM Waves (1982)Google Scholar
  40. 40.
    H.P. Röser, R. Wattenbach, E.J. Durwen, G.V. Schultz Anwendung eines Heterodyn-Spektrometers für das Submillimeter-Wellenlängengebiet Laser und Optoelektronik 14, No. 2 (1982)Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • H. P. Röser
    • 1
  • M. Yamanaka
    • 2
  • R. Wattenbach
    • 1
  • G. V. Schultz
    • 1
  1. 1.Max-Planck-Institute for RadioastronomyBonnW.-Germany
  2. 2.Course of Electromagnetic Energy Engineering Faculty of EngineeringOsaka UniversitySuita, Osaka 565Japan

Personalised recommendations