Advertisement

Journal of Statistical Physics

, Volume 22, Issue 2, pp 237–257 | Cite as

Equilibrium time correlation functions in the low-density limit

  • H. van Beijeren
  • O. E. LanfordIII
  • J. L. Lebowitz
  • H. Spohn
Articles

Abstract

We consider a system of hard spheres in thermal equilibrium. Using Lanford's result about the convergence of the solutions of the BBGKY hierarchy to the solutions of the Boltzmann hierarchy, we show that in the low-density limit (Boltzmann-Grad limit): (i) the total time correlation function is governed by the linearized Boltzmann equation (proved to be valid for short times), (ii) the self time correlation function, equivalently the distribution of a tagged particle in an equilibrium fluid, is governed by the Rayleigh-Boltzmann equation (proved to be valid for all times). In the latter case the fluid (not including the tagged particle) is to zeroth order in thermal equilibrium and to first order its distribution is governed by a combination of the Rayleigh-Boltzmann equation and the linearized Boltzmann equation (proved to be valid for short times).

Key words

Time correlation functions low-density limit linearized Boltzmann equation Boltzmann-Grad limit 

References

  1. 1.
    H. Grad, Principles of the Kinetic Theory of Gases, inHandbuch der Physik, S. Flügge, ed. (Springer, Berlin, 1958), Vol. 12.Google Scholar
  2. 2.
    O. E. Lanford, Time Evolution of Large Classical Systems, inDynamical Systems, Theory and Applications, J. Moser, ed. (Lecture Notes in Physics No. 38, Springer, Berlin, 1975), p. 1.Google Scholar
  3. 3.
    O. E. Lanford, On the Derivation of the Boltzmann Equation.Soc. Math. de France. Astérisque 40:117 (1976).Google Scholar
  4. 4.
    J. L. Lebowitz and J. Percus,Phys. Rev. 155:122 (1967).Google Scholar
  5. 5.
    J. L. Lebowitz, J. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).Google Scholar
  6. 6.
    P. Resibois and J. L. Lebowitz,J. Stat. Phys. 12:483 (1975).Google Scholar
  7. 7.
    W. Braun and K. Hepp,Comm. Math. Phys. 56:101 (1977).Google Scholar
  8. 8.
    K. Hepp and E. H. Lieb,Helv. Phys. Acta 46, 573 (1973).Google Scholar
  9. 9.
    F. King, Ph.D. Thesis, Department of Mathematics, University of California at Berkeley (1975).Google Scholar
  10. 10.
    C. Cercignani,Transport Theory and Statistical Physics 2:211 (1972).Google Scholar
  11. 11.
    O. E. Lanford, Notes of the Lectures at the Troisième Cycle, Lausanne (1978), unpublished.Google Scholar
  12. 12.
    R. K. Alexander, Ph.D. Thesis, Department of Mathematics, University of California at Berkeley (1975).Google Scholar
  13. 13.
    C. Cercignani,The Boltzmann Equation (Elsevier, New York, 1976).Google Scholar
  14. 14.
    M. Klaus,Helv. Phys. Acta 48:99 (1975).Google Scholar
  15. 15.
    D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Mass., 1969).Google Scholar
  16. 16.
    R. L. Dobrushin and B. Tirozzi,Comm. Math. Phys. 54:173 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • H. van Beijeren
    • 1
  • O. E. LanfordIII
    • 2
  • J. L. Lebowitz
    • 3
  • H. Spohn
    • 4
  1. 1.Fachber. PhysikTH AachenAachenWest Germany
  2. 2.Department of MathematicsUniversity of California at BerkeleyBerkeley
  3. 3.Department of MathematicsRutgers UniversityNew Brunswick
  4. 4.Fachber. PhysikUniversität MünchenMunichWest Germany

Personalised recommendations