Journal of Statistical Physics

, Volume 24, Issue 1, pp 279–297 | Cite as

The third law of thermodynamics and the degeneracy of the ground state for lattice systems

  • Michael Aizenman
  • Elliott H. Lieb
Articles

Abstract

The third law of thermodynamics, in the sense that the entropy per unit volume goes to zero as the temperature goes to zero, is investigated within the framework of statistical mechanics for quantum and classical lattice models. We present two main results: (i) For all models the question of whether the third law is satisfied can be decided completely in terms of ground-state degeneracies alone, provided these are computed for all possible “boundary conditions.” In principle, there is no need to investigate possible entropy contributions from low-lying excited states, (ii) The third law is shown to hold for ferromagnetic models by an analysis of the ground states.

Key words

Third law entropy thermodynamics lattice systems statistical mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Griffiths,J. Math. Phys. 6:1447 (1965).CrossRefADSGoogle Scholar
  2. 2.
    R. B. Griffiths, inA Critical Review of Thermodynamics, E. B. Stuart, B. Gal-Or, and A. J. Brainard, eds. (Mono Book Corp., Baltimore, 1970).Google Scholar
  3. 3.
    H. B. G. Casimir,Z. Physik 171:246 (1963); M. J. Klein, inTermodinamica Dei Processi Irreversibili, S. R. De Groot, ed. (N. Zamichelli, Bologna, 1960), p. 1.MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    H. S. Leff,Phys. Rev. A 2:2368 (1970).CrossRefADSGoogle Scholar
  5. 5.
    J. Slawny,Comm. Math. Phys. 34:271 (1973);46:75 (1976).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    D. Ruelle,Statistical Mechanics (W. A. Benjamin, New York, 1969).MATHGoogle Scholar
  7. 7.
    A. Wehrl,Rev. Mod. Phys. 50:221 (1978).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    R. Israel,Convexity in the Theory of Lattice Gases (Princeton Univ. Press, 1979).Google Scholar
  9. 9.
    R. L. Dobrushin,Theor. Prob. Appl. 13:197 (1968); O. E. Lanford III and D. Ruelle,Comm. Math. Phys. 13:194 (1969).CrossRefGoogle Scholar
  10. 10.
    E. H. Lieb and J. L. Lebowitz,Adv. Math. 9:316 (1972), p. 351.CrossRefMathSciNetGoogle Scholar
  11. 11.
    G. H. Wannier,Phys. Rev. 79:357 (1950).MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    M. Aizenman, E. B. Davies, and E. H. Lieb,Adv. Math. 28:84 (1978).CrossRefMathSciNetGoogle Scholar
  13. 13.
    E. B. Davies,Quantum Theory of Open Systems (Academic Press, New York, 1976).MATHGoogle Scholar
  14. 14.
    J. Slawny, private communication.Google Scholar
  15. 15.
    W. F. Giauque and M. A. Ashley,Phys. Rev. 43:81 (1933); W. F. Giauque and J. W. Stout,J. Am. Chem. Soc.,58:1144 (1936).CrossRefADSGoogle Scholar
  16. 16.
    L. Pauling,J. Am. Chem. Soc. 57:2680 (1935).CrossRefGoogle Scholar
  17. 17.
    P. W. Kasteleyn,Physica 27:1209 (1962).CrossRefADSGoogle Scholar
  18. 18.
    H. N. V. Temperley and M. E. Fisher,Phil. Mag. 6:1061 (1961).MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    E. H. Lieb,Phys. Rev. Lett. 18:692 (1967);Phys. Rev. 162:162 (1967).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Michael Aizenman
    • 1
  • Elliott H. Lieb
    • 1
    • 2
  1. 1.Department of PhysicsPrinceton UniversityPrinceton
  2. 2.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations