Journal of Statistical Physics

, Volume 47, Issue 3–4, pp 439–458 | Cite as

On the metric properties of the Feigenbaum attractor

  • Erik Aurell


The two standard literature definitions of the function associated with the Feigenbaum attractor are not equivalent. The method due to Vulet al. and Feigenbaum is used to calculate the Haussdorff dimension of the Feigenbaum attractor, using as input the trajectory scaling functions. The two calculations yield the same Hausdorff dimensionD=0.5380451435 to within the accuracy of the computation.

Key words

Period-doubling fractal dimensions trajectory scaling functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Grassberger,J. Stat. Phys. 26:173 (1981).Google Scholar
  2. 2.
    P. Grassberger,Phys. Lett. A 107:101 (1985).Google Scholar
  3. 3.
    M. J. Feigenbaum,Commun. Math. Phys. 77:65 (1980).Google Scholar
  4. 4.
    M. J. Feigenbaum,J. Stat. Phys., to appear (1987).Google Scholar
  5. 5.
    P. Grassberger and I. Procaccia,Physica D 13:34 (1984).Google Scholar
  6. 6.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, and I. Procaccia,Phys. Rev. A 33:1141 (1986).Google Scholar
  7. 7.
    D. Bensimon, M. H. Jensen, and L. P. Kadanoff,Phys. Rev. A 33:3622 (1986).Google Scholar
  8. 8.
    E. Aurell, Göteborg preprint 86-9 (1986).Google Scholar
  9. 9.
    M. J. Feigenbaum,J. Stat. Phys. 19:25 (1978); in Universality in Chaos, P. Cvitanović, ed. (Adam Hilger, 1984).Google Scholar
  10. 10.
    E. B. Vul, Ya. G. Sinai, and K. M. Khanin,Usp. Mat. Nauk 39(3):3 (1984) [Russ. Math. Surv. 39(3):1 (1984)].Google Scholar
  11. 11.
    O. E. Lanford III,Bull. Am. Math. Soc. 6:427 (1982).Google Scholar
  12. 12.
    C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, 1978), Chapter 8, p. 368.Google Scholar
  13. 13.
    D. Ruelle,Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).Google Scholar
  14. 14.
    P. Grassberger, Personal communication (June 1986).Google Scholar
  15. 15.
    J. Doyne Farmeret al.,Physica D 7:153 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Erik Aurell
    • 1
  1. 1.Institute of Theoretical PhysicsChalmers University of Technology and University of GöteborgGöteborgSweden

Personalised recommendations