Journal of Statistical Physics

, Volume 47, Issue 3–4, pp 409–438 | Cite as

One-dimensional model of the quasicrystalline alloy

  • S. E. Burkov
Articles

Abstract

A one-dimensional chain of atoms of two types is investigated. It is proven exactly for the model of attracting hard spheres that if the ratio of the numbers of atoms of the two types is irrational, then the state of absolutely minimal energy is quasicrystalline. The quasicrystalline state is also investigated in the case of the Lennard-Jones interatomic potential. All the microscopic values (interatomic spacing, electronic density, etc.) are shown to be quasiperiodic functions varying on Cantor sets. Diffraction patterns, electronic properties, and vibrational spectra are also discussed.

Key words

Quasicrystals incommensurability localization groundstate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Schechtman, I. Blech, D. Gratias, and J. W. Cahn,Phys. Rev. Lett. 53:1951 (1984).Google Scholar
  2. 2.
    P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov,JETP Lett. 41:2477 (1984);J. Phys. Lett (Paris) 46:L601 (1985).Google Scholar
  3. 3.
    D. Levine and P. J. Steinhardt,Phys. Rev. Lett. 53:2477 (1984).Google Scholar
  4. 4.
    R. Penrose,Bull. Inst. Math. Appl. 10:266 (1974); M. Gardner,Sci. Am. 236(11) (1977).Google Scholar
  5. 5.
    S. Aubry,J. Phys. (Paris) 44:147 (1983).Google Scholar
  6. 6.
    S. Aubry and P. Y. Le Daeron,Physica D 8:381 (1983).Google Scholar
  7. 7.
    S. E. Burkov,Solid State Commun. 56:355 (1985).Google Scholar
  8. 8.
    S. E. Burkov,J. Phys. (Paris) 46:317 (1985).Google Scholar
  9. 9.
    P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, preprint (1986).Google Scholar
  10. 10.
    S. E. Burkov and Ya. G. Sinai,sov. Sci. Rev. 38:205 (1983).Google Scholar
  11. 11.
    A. A. Kerimov,Theor. Math. Phys. 58:473 (1984) (in Russian).Google Scholar
  12. 12.
    L. S. Levitov, Personal communication (1986).Google Scholar
  13. 13.
    A. Ya. Khintchin,Continued Fractions (Nauka, Moscow, 1978).Google Scholar
  14. 14.
    J. Hubbard,Phys. Rev. B 17:494 (1978).Google Scholar
  15. 15.
    S. Aubry,J. Phys. C 16:2497 (1983).Google Scholar
  16. 16.
    P. Bak and R. Bruinsma,Phys. Rev. Lett. 49:249 (1982).Google Scholar
  17. 17.
    V. L. Pokrovsky and G. Uimir,J. Phys. C 11:3535 (1978).Google Scholar
  18. 18.
    M. Kohmoto, L. P. Kadanoff, and C. Tang,Phys. Rev. Lett. 50:1870 (1983).Google Scholar
  19. 19.
    M. Kohmoto and Y. Oono,Phys. Lett. A 102:145 (1984).Google Scholar
  20. 20.
    M. Peyrard and S. Aubry,J. Phys. C 16:1593 (1983).Google Scholar
  21. 21.
    V. I. Oseledec,Proc. Moscow Math. Soc. 19:179 (1968) (in Russian).Google Scholar
  22. 22.
    R. Berger,Mem. Am. Math. Soc. 66 (1966).Google Scholar
  23. 23.
    R. M. Robinson,Invent. Math. 12:177 (1971).Google Scholar
  24. 24.
    C. Radin,Phys. Lett. 11:381 (1986).Google Scholar
  25. 25.
    H. Yamamoto and H. Nakazawa,Acta Cryst. A 38:79 (1982).Google Scholar
  26. 26.
    Les Houches Lectures,J. Phys. (Paris) (Colloque C-3)47 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • S. E. Burkov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowUSSR

Personalised recommendations