Journal of Statistical Physics

, Volume 47, Issue 3–4, pp 297–330

Lattice gas generalization of the hard hexagon model. III.q-Trinomial coefficients

  • George E. Andrews
  • R. J. Baxter
Articles
  • 125 Downloads

Abstract

In the first two papers in this series we considered an extension of the hard hexagon model to a solvable two-dimensional lattice gas with at most two particles per pair of adjacent sites, and we described the local densities in terms of elliptic theta functions. Here we present the mathematical theory behind our derivation of the local densities. Our work centers onq-analogs of trinomial coefficients.

Key words

Statistical mechanics lattice statistics number theory hard hexagon model Rogers-Ramanujan identities trinomial coefficients q-series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • George E. Andrews
    • 1
  • R. J. Baxter
    • 2
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity Park
  2. 2.Research School of Physical ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations