The Histochemical Journal

, Volume 7, Issue 3, pp 259–266 | Cite as

Muscle fibre type populations of human leg muscles

  • V. Reggie Edgerton
  • J. L. Smith
  • D. R. Simpson


Four selected leg muscles (gastrocnemius, soleus, vastus lateralis and intermedius) from thirty-two humans were autopsied within 25 hr of death and examined histochemically. The results of histochemical myofibrillar adenosine triphosphatase activity demonstrated that the soleus and vastus intermedius muscles have a higher proportion of slow twitch fibres (70%, 47%) than their synergists, gastrocnemius and vastus lateralis, respectively. The gastrocnemius contains about 50% slow twitch fibres and the vastus lateralis about 32%. Similar proportions of slow and fast twitch fibres have been reported for these hindlimb muscles in other mammals. Human muscles, however, differ from other mammalian muscles in that the proportion of slow and fast twitch fibres were similar in the superficial and deep regions of the muscles examined. Fast twitch oxidative glycolytic fibres in sedentary humans were observed less frequently, and they are less prominent in terms of oxidative enzymatic activity when compared to similar fibres of several laboratory mammals studied previously.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariano, M. A., Armstrong, R. B. &Edgerton, V. R. (1973). Hindlimb muscle fiber populations of five mammals.J. Histochem. Cytochem. 21, 51–5.Google Scholar
  2. Baldwin, K., Klinkerfuss, G. H., Terjung, R. L., Mole, P. A. &Holloszy, J. O. (1972). Respiratory capacity of white, red and intermediate muscle: Adaptive response to exercise.Am. J. Physiol. 222, 373–8.Google Scholar
  3. Barnard, R. J., Edgerton, V. R., Furakawa, T. &Peter, J. B. (1971). Histochemical, biochemical and contractile properties of red, white and intermediate fibers.Am. J. Physiol. 220, 410–14.Google Scholar
  4. Buchthal, F. &Schmalbruch, H. (1970). Contraction times and fiber types in intact human muscle.Acta physiol. scand. 79, 435–52.Google Scholar
  5. Burke, R. E. &Tsairis, P. (1973). Anatomy and innervation ratios in motor units of cat gastrocnemius.J. Physiol. (Lond.) 234, 749–65.Google Scholar
  6. Close, R. (1967). Properties of motor units in fast and slow skeletal muscles of the rat.J. Physiol. (Lond.) 193, 45–55.Google Scholar
  7. Close, R. I. (1972). Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.Google Scholar
  8. Edgerton, V. R. &Simpson, D. R. (1969). The intermediate fiber of rats and guinea pigs.J. Histochem. Cytochem. 17, 828–38.Google Scholar
  9. Edgerton, V. R. &Simpson, D. R. (1971). Dynamic and metabolic relationships in the rat extensor digitorium longus muscle.Exp. Neurol. 30, 374–6.Google Scholar
  10. Edgerton, V. R., Saltin, B., Essén, B. & Simpson, D. R. (1975). Glycogen depletion in specific types of human skeletal muscle fibers in intermittent and continuous exercise. In:Metabolic Adaptation to Prolonged Physical Exercise (eds. H. Howard & J. R. Poortmans), in press.Google Scholar
  11. Edgerton, V. R., Gerchman, L. &Carrow, R. (1969). Histochemical changes in rat skeletal muscle after exercise.Exp. Neurol.,24, 110–23.Google Scholar
  12. Edström, L. &Nystrom, B. (1969). Histochemical types and sizes of fibres in normal human muscles. A biopsy study.Acta neurol. scand. 45, 257–69.Google Scholar
  13. Engel, W. K. (1962). The essentiality of histochemical and cytochemical studies of skeletal muscles in the investigation of neuromuscular disease.Neurology 12, 778–84.Google Scholar
  14. Gollnick, P., Armstrong, R. B., Saubert, C. W. IV, Piehl, K. &Saltin, B. (1972). Enzyme activity and fiber composition in skeletal muscle of trained and untrained men.J. appl. Physiol. 33, 312–19.Google Scholar
  15. Guth, L. (1973). Fact and artifact in the histochemical procedure for myofibrillar ATPase.Exp. Neurol. 41, 440–50.Google Scholar
  16. Guth, L. &Samaha, F. J. (1969). Qualitative differences between actomyosin ATPase of slow and fast mammalian muscles.Exp. Neurol. 25, 138–52.Google Scholar
  17. Johnson, M. A., Polgar, J., Weightman, D. &Appleton, D. (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study.J. neurol. Sci. 18, 111–29.Google Scholar
  18. Novikoff, A. B., Shin, W. &Drucker, J. (1961). Mitochondrial localization of oxidative enzymes. Staining results with two tetrazolium salts.J. biophys. biochem. Cytol. 9, 47–61.Google Scholar
  19. Padykula, H. A. &Herman, E. (1955). The specificity of the histochemical method for adenosine triphosphatase.J. Histochem. Cytochem. 3, 170–95.Google Scholar
  20. Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. &Stempel, K. E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits.Biochemistry 11, 2627–33.Google Scholar
  21. Pette, D., Smith, M. E., Staudte, H. W., &Vrbová, G. (1973). Effects of long term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles.Pflügers Arch. 338, 257–72.Google Scholar
  22. Samaha, F. J. &Yunis, E. J. (1973). Quantitative and histochemical demonstration of calcium activated mitochondrial ATPase in skeletal muscle.Exp. Neurol. 41, 431–9.Google Scholar
  23. Stephens, J. A., Gerlach, R. L., Reinking, R. M. &Stuart, D. G. (1973). Fatigueability of medial gastrocnemius motor units in the cat. In:Control of Posture and Locomotion (ed. R. B. Stein, K. G. Pearson, R. S. Smith & J. B. Redford), p. 179–85. New York: Plenum Press.Google Scholar
  24. Taylor, A. W., Essén, B. &Saltin, B. (1974). Myosin ATPase in skeletal muscle of healthy men.Acta physiol. scand. 91, 568–70.Google Scholar
  25. Wattenberg, L. W. &Leong, J. L. (1960). Effects of coenzyme Q10 and menadione on succinate dehydrogenase activity as measured by tetrazolium salt reaction.J. Histochem. Cytochem. 8, 296–303.Google Scholar

Copyright information

© Chapman and Hall Ltd 1975

Authors and Affiliations

  • V. Reggie Edgerton
    • 1
  • J. L. Smith
    • 1
  • D. R. Simpson
    • 1
  1. 1.Neuromuscular Research Laboratory, Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations