The rate of error growth in Hamiltonian-conserving integrators

  • Donald J. Estep
  • Andrew M. Stuart
Original Papers

Abstract

In this note, we consider numerical methods for a class of Hamiltonian systems that preserve the Hamiltonian. We show that the rate of growth of error is at most linear in time when such methods are applied to problems with period uniquely determined by the value of the Hamiltonian. This contrasts to generic numerical schemes, for which the rate of error growth is superlinear. Asymptotically, the rate of error growth for symplectic schemes is also linear. Hence, Hamiltonian-conserving schemes are competitive with symplectic schemes in this respect. The theory is illustrated with a computation performed on Kepler's problem for the interaction of two bodies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. I. Arnold,Mathematical Methods of Classical Mechanics, Springer, New York 1989.Google Scholar
  2. [2]
    J. Baumgarte and E. Stiefel,Stabilization by manipulation of the Hamiltonian, Cel. Mech.10, 71–83 (1974).Google Scholar
  3. [3]
    J. de Frutos and J. M. Sanz-Serna,Erring and being conservative. InNumerical Analysis, D. F. Griffiths and G. A. Watson (eds.), Pitman 1994.Google Scholar
  4. [4]
    D. Estep and D. French,Global error control for the continuous Galerkin finite element method for ordinary differential equations, RAIRO Modélisation Mathématique et Analyse Numérique28, 815–852 (1994).Google Scholar
  5. [5]
    O. Gonzalez and J. C. Simo,On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Submitted to Comp. Meth. Appl. Mech. Eng. (1994).Google Scholar
  6. [6]
    W. B. Gordon,On the relation between period and energv in periodic dynamical systems. J. Appl. Math, and Mech.19, 111–114 (1969).Google Scholar
  7. [7]
    U. Kirchgraber,On the Stiefel-Baumgarte stabilization procedure, J. Appl. Math, and Physics30, 272–291 (1979).Google Scholar
  8. [8]
    D. Okunbor,Variable step size does not harm second-order integrators for Hamiltonian systems, J. Comp. Appl. Math.47, 273–279 (1993).Google Scholar
  9. [9]
    J. M. Sanz-Serna,Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica 1992, Cambridgge University Press.Google Scholar
  10. [10]
    J. M. Sanz-Serna,Two topics in nonlinear stability. InAdvances in Numerical Analysis, Volume I, W. Light (ed.), Oxford University Press 1992.Google Scholar
  11. [11]
    J. M. Sanz-Serna and M. P. Calvo,Numerical Hamiltonian Problems, Chapman and Hall, 1994.Google Scholar
  12. [12]
    J. M. Sanz-Serna and M. P. Calvo,The development of variable-step symplectic integrators, with application to the two-body problem, SIAM J. Sci. Stat. Comp.14, 936–952 (1993).Google Scholar
  13. [13]
    J. C. Simo, N. Tarnow and K. K. Wong,Exact energy-mommentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comp. Meth. Appl. Mech. Eng.1, 63–116 (1992).Google Scholar
  14. [14]
    J. C. Simo and N. Tarnow,The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP43, 757–793 (1992).Google Scholar
  15. [15]
    E. Stiefel and G. Scheifele,Linear and Regular Celestial Mechanics, Springer, New York 1971.Google Scholar
  16. [16]
    A. M. Stuart,Numerical Analysis of Dynamical Systems. Appears in Acta Numerica 1994, Cambridge University Press, Cambridge 1994.Google Scholar
  17. [17]
    H. Yoshida,Recent progress in the theory and application of symplectic integrators, Cel. Mech. Dyn. Atsr.56, 27–43 (1993).Google Scholar
  18. [18]
    G. Zhong and J. E. Marsden,Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A133, 134–139 (1988).Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Donald J. Estep
    • 1
  • Andrew M. Stuart
    • 2
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlanta
  2. 2.Scientific Computing and Computational Mathematics Program, Division of Applied MechanicsStanford UniversityStanfordUSA

Personalised recommendations