Advertisement

Metabolic Brain Disease

, Volume 8, Issue 1, pp 1–44 | Cite as

Tryptamine: A metabolite of tryptophan implicated in various neuropsychiatric disorders

  • Darrell D. Mousseau
Review Article

Summary

Although early interest in the biomedical relevance of tryptamine has waned in recent years, it is clear from the above discussion that the study of tryptamine is worthy of serious consideration as a factor in neuropsychiatric disorders. The study of [3H]-tryptamine binding sites indicates an adaptive responsiveness characteristic of functional receptors. The question raised by Jones (1982d) on whether tryptamine is acting centrally as a neurotransmitter or a neuromodulator still remains mostly unanswered, although the evidence cited within this review strongly suggests a modulatory role for this neuroactive amine (see also Juorio and Paterson, 1990). The synthesis and degradative pathways of tryptamine, as well as the intricate neurochemical and behavioral consequences of altering these pathways, are now more fully understood. It is not yet clear what the role of tryptamine is under normal physiological [homeostatic] conditions, however, its role during pathological conditions such as mental and physical stress, hepatic dysfunction and other disorders of metabolism (i.e. electrolyte imbalance, increased precursor availability, enzyme induction or alterations in enzyme co-factor availability) may be quite subtle, perhaps accounting for various sequelae hitherto considered idiopathic. The evidence for a primary role for tryptamine in the etiology of mental or neurological diseases is still relatively poor, although the observations that endogenous concentrations of tryptamine are particularly susceptible to pharmacological as well as physiological manipulations serve to reinforce the proposition that this indoleamine is not simply a metabolic accident but rather a neuroactive compound in its own right. Finally, one might wonder what proportion of the data attributed to modifications of 5-HT metabolism might, in fact, involve unrecognized changes in the concentrations of other neuroactive metabolites of tryptophan such as tryptamine.

Keywords

Tryptophan Hepatic Dysfunction Neuropsychiatric Disorder Enzyme Induction Tryptamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G.K., and Asher, I.M. (1971). Histochemical fluorescence of raphé neurones: Selective enhancement by tryptophan.Science 172: 1159–1161.Google Scholar
  2. Aghajanian, G.K., and Haigler, H.J. (1975). Hallucinogenic indoleamines: preferential action upon presynaptic serotonin receptors.Psychopharmacol. Comm. 1: 619–629.Google Scholar
  3. Airaksinen, M.M., Svensk, H., Tuomisto, J., and Komulainen, H. (1980). Tetrahydro-β-carbolines and corresponding tryptamines:In vitro inhibition of serotonin and dopamine uptake by human blood platelets.Acta Pharmacol. Toxicol. 46: 308–313.Google Scholar
  4. Altar, C.A., Wasley, A.M., and Martin, L.L. (1986). Autoradiographic localization and pharmacology of unique [3H]tryptamine binding sites in rat brain.Neuroscience 17: 263–273.Google Scholar
  5. Anderson, G.M., Gerner, R.H., Cohen, D.J., and Fairbanks, L. (1984). Central tryptamine turnover in depression, schizophrenia and anorexia: Measurement of indoleacetic acid in cerebrospinal fluid.Biol. Psychiat. 19: 1427–1435.Google Scholar
  6. Anderson, G.M., Ross, D.L., Klykylo, W., Feibel, F.C., and Cohen, D.J. (1988). Cerebrospinal fluid indoleacetic acid in autistic subjects.J. Autism Develop. Disorders 18: 259–262.Google Scholar
  7. Andrews, C.D., Fernando, J.C.R., and Curzon, G. (1982). Differential involvement of dopamine-containing tracts in 5-hydroxytryptamine-dependent behaviours caused by amphetamine in large doses.Neuropharmacol. 21: 63–68.Google Scholar
  8. Anton-Tay, F., Sepulveda, J., and Gonzalez, S. (1970). Increase of brain pyridoxal phosphokinase activity following melatonin administration.Life Sci. 9: 1283–1288.Google Scholar
  9. Armstrong, M.D., and Robinson, K.S. (1954). On the excretion of indole derivatives in phenylketonuria.Arch. Biochem. Biophys. 52: 287.Google Scholar
  10. Artigas, F., and Gelpi, E. (1979). A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin and 5-hydroxyindole-3-acetic acid in the same sample of rat brain.Anal. Biochem. 92: 233–242.Google Scholar
  11. Atterwill, C.K., and Green, A.R. (1980). Responses of developing rats to L-tryptophan and an MAOI. I. Monitoring changes in behaviour, brain 5-HT and tryptophan.Neuropharmacol. 19: 325–335.Google Scholar
  12. Awapara, J., Sandman, R.P., and Hanly, C. (1962). Activation of DOPA decarboxylase by pyridoxal phosphate.Arch. Biochem. Biophys. 98: 520–525.Google Scholar
  13. Axelrod, J. (1962). The enzymatic N-methylation of serotonin and other amines.J. Pharmacol. Exp. Therap. 138: 28–33.Google Scholar
  14. Baker, G.B., and Yasensky, D.L. (1981). Interactions of trace amines with dopamine in rat striatum.Prog. Neuro-Psychopharmacol. 5: 577–580.Google Scholar
  15. Baker, G.B., Coutts, R.T., Yeung, J.M., Hampson, D.R., McIntosh, G.J.A., and McIntosh, M. (1985). Chronic administration of monoamine oxidase inhibitors: Basic and clinical investigations. In Boulton A.A., Maitre L., Bieck P.R. and Riederer P. (eds) Neuropsychopharmacology of the Trace Amines: Experimental and Clinical Aspects, Humana Press, Clifton, N.J., pp. 317–328.Google Scholar
  16. Baker, G.B., Hiob, L.E., Martin, I.L., Mitchell, P.R., and Dewhurst, W.G. (1980b). Interactions of tryptamine analogs with 5-hydroxytryptamine and dopamine in rat striatumin vitro.Proc. West. Pharmacol. Soc. 23: 167–170.Google Scholar
  17. Baker, G.B., Martin, I.L., and Mitchell, P.R. (1977). The effects of some indolalkylamines on the uptake and release of 5-hydroxytryptamine in rat striatum.Brit. J. Pharmacol. 61: 151P–152P.Google Scholar
  18. Baldessarini, R.J., and Fischer, J.E. (1973). Serotonin metabolism in rat brain after surgical diversion of the portal venous system.Nature 245: 25–27.Google Scholar
  19. Barchas, J.D., Elliot, G.R., DoAmaral, J., Erdelyi, E., O'Connor, S. Bowden, M., Brodie, H.K.H., Berger, P.A., Renson, J., and Wyatt, R.J. (1974). Tryptolines: Formation from tryptamine and 5MTHF by human platelets.Arch. Gen. Psychiat. 174: 862.Google Scholar
  20. Barker, S.A., Monti, A.J. and Christian, S.T. (1980). Metabolism of the hallucinogen N,N-dimethyltryptamine in rat brain homogenates.Biochem. Pharmacol. 29: 1049–1057.Google Scholar
  21. Baron, D.N., Dent, C.E., Harris, H., Hart, E.W., and Jepson, J.B. (1956). Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal amino-aciduria, and other bizarre biochemical features.Lancet 271: 421.Google Scholar
  22. Bennett, J.P., and Snyder, S.H. (1976). Serotonin and lysergic acid diethylamide in rat brain membranes: Relationship to postsynaptic serotonin receptors.Mol. Pharmacol. 12: 273–289.Google Scholar
  23. Bennett, T., and Gardiner, S.M. (1978). Corticosteroid involvement in the changes in noradrenergic responsiveness of tissues from rats made hypertensive by short-term isolation.Br. J. Pharmacol. 64: 129–136.Google Scholar
  24. Bickel, M.H. (1977). Imipramine series. In Psychotherapeutic Drugs, Part II: Applications Usdin E. and Forrest I.S. (eds), Marcel Dekker, Inc., New York, pp. 1131–1172.Google Scholar
  25. Bieck, P.R., Nilsson, E., Schick, C., Waldmeier, P.C., and Lauber, J. (1984). Urinary excretion of tryptamine in comparison to normetanephrine and β-phenylethylamine in human volunteers after subchronic treatment with different monoamine oxidase inhibitors. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds) Neurobiology of Trace Amines, Clifton, N.J., Humana Press, pp. 525–539.Google Scholar
  26. Björklund, A., Axelsson, S., and Falck, B. (1976). Intraneuronal indoleamines in the central nervous system.Adv. Biochem. Psychopharmacol. 15: 87–94.Google Scholar
  27. Björklund, A., Falck, B., and Steveni, U. (1970). On the possible existence of a new intraneuronal monoamine in the spinal cord of the rat.J. Pharmacol. Exp. Therap. 175: 525–532.Google Scholar
  28. Björklund, A., Falck, B., and Steveni, U. (1971). Classification of monoamine neurones in the mesencephalon: Distribution of a new monoamine neurone system.Brain Res. 32: 269–285.Google Scholar
  29. Bligh, J., Silver, A., and Smith, C.A. (1979). A central excitatory serotonergic or serotonergic-like synapse on the pathway to heat production in the sheep.J. Thermal Biol. 4: 259–268.Google Scholar
  30. Born, G.V.R, Juengjaosen, K., and Michal, F. (1972). Relative activities on and uptake by human blood platelets of 5-hydroxytryptamine and several analogues.Br. J. Pharmacol. 44: 117–139.Google Scholar
  31. Boulton, A.A., and Baker, G.B. (1974). The subcellular distribution of some monoamines following their intraventricular injection into the rat.Can. J. Biochem. 52: 288–293.Google Scholar
  32. Boulton, A.A., and Baker, G.B. (1975). The subcellular distribution of β-phenylethylamine, p-tyramine and tryptamine in rat brain.J. Neurochem. 25:477–481.Google Scholar
  33. Boulton A.A. and Juorio A.V. (1982). Brain trace amines. In Lajtha A. (ed.) Handbook of Neurochemistry, Vol. 1, Plenum Publishing Corp., New York, pp. 189–222.Google Scholar
  34. Boulton, A.A., and Marjerrison, G.L. (1972). Effect of L-DOPA therapy on urinary p-tyramine excretion and EEG changes in Parkinson's disease.Nature 236: 76–78.Google Scholar
  35. Bradley, P.B., Humphrey, P.P.A., and Williams, R.H. (1983). Are vascular ‘D’ and ‘5-HT2’ receptors for 5-hydroxytryptamine the same?Br. J. Pharmacol. Proc. Suppl. 79: 295P.Google Scholar
  36. Bradley, P.B., Humphrey, P.P.A., and Williams, R.H. (1985). Tryptamine-induced vasoconstrictor responses in rat caudal arteries are mediated predominantly via 5-hydroxytryptamine receptors.Br. J. Pharmacol. 84: 919–925.Google Scholar
  37. Broadbent, J., and Greenshaw, A.J. (1985). Effects of quipazine and of tryptamine on self-stimulation of median raphé nucleus and of lateral hypothalamus in rats.Pharmacol. Biochem. Behav. 23: 943–947.Google Scholar
  38. Brodie, B.B., Pletscher, A., and Shore, P.A. (1956). Possible role of serotonin in brain function and in reserpine action.J. Pharmacol. Exp. Therap. 116: 9.Google Scholar
  39. Brune, G.G., and Himwhich, H.E. (1962). Indole metabolites in schizophrenic patients.Arch. Gen. Psychiat. 6: 324–328.Google Scholar
  40. Brune, G.G., and Pflughaupt, K.-W. (1971). Effects of L-DOPA treatments on indole metabolism in Parkinson's disease.Experientia 27: 516.Google Scholar
  41. Brüning, G., and Rommelspacher, H. (1984). High affinity [3H]tryptamine binding sites in various organs of the rat.Life Sci. 34: 1441–1446.Google Scholar
  42. Brüning, G., and Rommelspacher, H. (1985a). Solubilization of high-affinity [3H]tryptamine-binding sites from rat brain.Eur. J. Biochem. 153: 95–99.Google Scholar
  43. Brüning, G., and Rommelspacher, H. (1985b). Properties of (3H)tryptamine binding sites from rat brain.J. Neurochem. 44 (Suppl.): S78.Google Scholar
  44. Brüning, G., and Rommelspacher, H. (1989). Biochemical characterization of [3H]tryptamine binding sites from rat brain.Biochem. Internat. 18:227–233.Google Scholar
  45. Cascio, C.S., and Kellar, K.J. (1982). Tetrahydro-beta-carbolines: Affinities for tryptamine and serotonergic binding sites.Neuropharmacol. 21: 1219–1221.Google Scholar
  46. Cascio, C.S., and Kellar, K.J. (1983). Characterization of [3H]tryptamine binding sites in brain.Eur. J. Pharmacol. 95: 31–39.Google Scholar
  47. Cascio, C.S., and Kellar, K.J. (1986). Effects of pargyline, reserpine and neurotoxin lesions on [3H]tryptamine binding sites in rat brain.Eur. J. Pharmacol. 120: 101–105.Google Scholar
  48. Chan, A., and Ebadi, M. (1981). Evidence for the existence of a serotonin N-acetyltransferase inactivating substance in rat pineal gland.Endoc. Res. Commun. 8: 205–227.Google Scholar
  49. Charlton, K.G., Johnson, T.D., Maurice, R.W., and Clarke, D.E. (1984). Kynuramine: High affinity for [3H]tryptamine binding sites.Eur. J. Pharmacol. 106: 661–664.Google Scholar
  50. Christensen, J.G., Dairman, W., and Udenfriend, S. (1970). Preparation and properties of a homogenous aromatic amino acid decarboxylase from hog kidney.Arch. Biochem. Biophys. 141: 356–357.Google Scholar
  51. Cohen, A.I., and Blazynski, C. (1987). Tryptamine and some related molecules block the accumulation of a light-sensitive pool of cyclic AMP in the dark-adapted, dark-incubated mouse retina.J. Neurochem. 48: 729–737.Google Scholar
  52. Collins, M.A., Dahl, K., Nijm, W. and Major, L.F. (1982). Evidence for homologous families of dopamine and serotonin condensation products in CSF from monkeys.Soc. Neurosci. 8: 277.Google Scholar
  53. Conn, P.J., and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: Mediation by the S2 binding in rat cerebral cortex but not in subcortical regions.J. Pharmacol. Exp. Therap. 234: 195–203.Google Scholar
  54. Coppen, A. (1967). The biochemistry of affective disorders. Br. J. Pharmacol.113: 1237–1264.Google Scholar
  55. Coppen, A., Shaw, D.M., Malleson, A., Eccleston, E., and Grundy, G. (1965). Tryptamine metabolism in depression.Br. J. Psychiat. 111: 993–998.Google Scholar
  56. Costa, J.L., Murphy, D.L., and Reveille, J. (1977). Evaluation of the uptake of various amines into storage vesicles of intact human platelets.Br. J. Pharmacol. 61: 223–228.Google Scholar
  57. Courtois, D., Yvernel, D., Florin, B., and Petiard, V. (1988). Conversion of tryptamine to serotonin by cell suspension cultures ofPeganum harmala. Phytochem.27: 3137–3142.Google Scholar
  58. Cox, B., and Ennis, C. (1982). The effects of tryptamine on serotonin release from hypothalamic slices is mediated by a cholinergic interneurone.Pharmacol. 78: 85–88.Google Scholar
  59. Cox, B., Davis, A., Juxon, V., Lee, F., and Martin, D. (1983). A role for an indoleamine other than 5-hydroxytryptamine in the hypothalamic thermoregulatory pathways in the rat.J. Physiol. 337: 441–445.Google Scholar
  60. Cox, B., Lee, T.F., and Martin, D. (1981). Different hypothalamic receptors mediate 5-hydroxytryptamine- and tryptamine-induced core temperature changes in the rat.Br. J. Pharmacol. 72: 477–482.Google Scholar
  61. Curds, D.R. (1962). Action of 3-hydroxytyramine and tryptamine derivatives on spinal neurons.Nature 194: 292.Google Scholar
  62. Curtis, D.R., and Davis, R. (1962). Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat.Br. J. Pharmacol. 18: 217–246.Google Scholar
  63. Dabadie, H., Geffard, M., Charrier, M.C., Locuratolo, D., Berrier, C., and Jacquesy, J.C. (1992). First characterization of 6-hydroxytryptamine in the rat midbrain using specific antibodies.J. Neurochem. 58: 1292–1299.Google Scholar
  64. Dabadie, H., Mons, N., and Geffard, M. (1990). Simultaneous detection of tryptamine and dopamine in rat substantia nigra and raphé nuclei using specific antibodies.Brain Res. 512: 138–142.Google Scholar
  65. Dahlström, A., and Fuxe, K. (1964). Evidence for the existence of monoamine containing neurones in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons.Acta Physiol. Scand. 62 (Suppl): 232.Google Scholar
  66. De Feudis, F.V., and Black, W.C. (1973). A comparison of the binding of [14C]-gamma-arninobutyric acid and [3H]acetylcholine to paniculate fractions of 4 regions of rat brain in the presence of 40 mMNaCl.Brain Res. 49: 218–222.Google Scholar
  67. Deakin, J.F.W., and Green, A.R. (1978). The effects of putative 5-HT antagonists on the behaviour produced by administration of tranylcypromine and L-tryptophan or tranylcypromine and L-DOPA to rats.Br. J. Pharmacol. 64: 201–209.Google Scholar
  68. Delini-Stula, A., and Radeke, E. (1985). Behavioral and pharmacological characterisation of tryptamine-induced excitation syndrome in rats. In Boulton A.A., Bieck P.R., Maitre L. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines: Experimental and Clinical Aspects, Humana Press, Clifton, N.J., pp. 125–140.Google Scholar
  69. Dewar, K.M., and Reader, T.A. (1989). Specific [3H]SCH23390 binding to dopamine D1 receptors in cerebral cortex and neostriatum: Role of disulfide and sulfhydryl groups.J. Neurochem. 52: 472–482.Google Scholar
  70. Dewhurst, W.G. (1968a). Cerebral amine functions in health and disease. In Sheperd M. and Davies D.L. (eds.) Studies in Psychiatry, Oxford University Press, pp. 289–317.Google Scholar
  71. Dewhurst, W.G. (1968b). New theory of cerebral amine function and its clinical application.Nature (Land.) 218: 1130–1133.Google Scholar
  72. Dewhurst, W.G., and Marley, E. (1965). Action of sympathomimetic and allied amines on the central nervous system of the chicken.Br. J. Pharmacol. 25: 705–727.Google Scholar
  73. Dickinson S.L. and Curzon G. (1983). Roles of dopamine and 5-HT in stereotyped and non-stereotyped behaviour.Neuropharmacol. 22: 805–812.Google Scholar
  74. Dooley, D.J., and Quock, R.M. (1976). Tryptamine and 5-hydroxytryptamine induced hypothermia in mice.J. Pharm. Pharmacol. 28: 775–776.Google Scholar
  75. Dourish, C.T., and Broadbent, J. (1984). Effects of tryptamine and 5-hydroxytryptamine on food intake in the rat. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 415–421.Google Scholar
  76. Dubbels, R., and Elofsson, R. (1989). N-Acetylation of arylalkylamines (serotonin and tryptamine) in the crayfish brain.Comp. Biochem. Physiol. 93: 307–312.Google Scholar
  77. Durden, D.A., and Philips, S.R. (1980). Kinetic measurements of the turnover rates of phenylethylamine and tryptaminein vivo in the rat brain.J. Neurochem. 34: 1725–1732.Google Scholar
  78. Dyck, L.E. (1984). Tryptamine transport in rat brain slices: A comparison with 5-hydroxytryptamine.Neurochem. Res. 9: 617–628.Google Scholar
  79. Dyck, L.E. (1989). Release of some endogenous trace amines from rat striatal slices in the presence and absence of a monoamine oxidase inhibitor.Life Sci. 44: 1149–1156.Google Scholar
  80. Eccleston, D., Crawford, T.B.B., and Ashcroft, G. (1963). Tryptamine in the blood and urine of a patient with a carcinoid tumour.Nature 197: 502–503.Google Scholar
  81. Ennis, C., and Cox, B. (1982). Pharmacological evidence for the existence of two distinct serotonin receptors in rat brain.Neuropharmacol. 21: 41–44.Google Scholar
  82. Ennis, C., Kemp, J.D., and Cox, B. (1981). Characterization of inhibitory receptors that modulate dopamine release in the striatum.J. Neurochem. 36: 1515–1520.Google Scholar
  83. Ernst, A.M., Van-Andel, H., and Charbon, G.A. (1961). Beruht die experimentelle Katatonic durch tryptamin auf einer Verdrangung des 5-hydroxytryptamine?Psychopharm. 2: 425–435.Google Scholar
  84. Fischer, J.E., and Baldessarini, R.J. (1971). False neurotransmitters and hepatic failure.Lancet 2: 75–80.Google Scholar
  85. Fletcher, P.J. (1988). Effects of tryptamine and 5-HT microinjected into the nucleus accumbens on D-amphetamine-locomotor activity. In Boulton A.A., Juorio A.V. and Downer R.G.H. (eds.) Trace Amines: Comparative and Clinical Neurobiology, Humana Press, Clifton, N.J., pp. 273–280.Google Scholar
  86. Fletcher, P.J., and Paterson, I.A. (1989). A comparison of the effects of tryptamine and 5-hydroxytryptamine on feeding following injection into the paraventricular nucleus of the hypothalamus.Pharmacol. Biochem. Behav. 32: 907–911.Google Scholar
  87. Foldes, A., and Costa, E. (1975). Relationship of brain monoamines and locomotor activity in rats.Biochem. Pharmacol. 24: 1617–1621.Google Scholar
  88. Fowler, C.J., Magnusson, O., and Ross, S.B. (1984). Intra and extraneuronal monoamine oxidase.Blood Vessels 21: 126–131.Google Scholar
  89. Fregly, M.J., Lockley, O.E., and Cade, J.R. (1988). Effect of dietary treatment with L-tryptophan on the development of renal hypertension in rats.Pharmacol. 36: 91–100.Google Scholar
  90. Frenken, M., and Kaumann, A. (1988). Effects of tryptamine mediated through 2 states of the 5-HTz receptor in calf coronary artery.Naunyn-Schmiedeberg's Arch. Pharmacol. 337: 484–492.Google Scholar
  91. Friedman, R.N. (1979). Tryptamine-induced alterations of acetylcholine release at a neuromuscular junction.Soc. Neurosci. Abstr. 5: 480P.Google Scholar
  92. Friedman, R.N., Shank, R.P., and Freeman, A.R. (1981). The effects of tryptamine on transmitter release at a lobster neuromuscular junction.Brain Res. 214: 101–111.Google Scholar
  93. Fuxe, K., and Ungerstedt, U. (1968). Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurones after intraventricular injection of catecholamines and 5-hydroxytryptamine.Eur. J. Pharmacol. 4: 134–144.Google Scholar
  94. Gaddum, J.H. (1953). Tryptamine receptors.J. Physiol. 119: 363–368.Google Scholar
  95. Geffard, M., Tuffet, S., Mons, N., and Chagnaud, J.L. (1987). Simultaneous detection of indoleamines and dopamine in rat dorsal nuclei using specific antibodies.Histochem. 88: 61–64.Google Scholar
  96. Gerber, R., Marien, M.R., and Altar, C.A. (1986). Intra-accumbens tryptamine injections increase rat locomotor activity.Fed. Proc. (Abstr.) 45: 430.Google Scholar
  97. Gerschenfeld, H.M., and Stefani, E. (1966). An electrophysiological study of 5-HT receptors of neurones in the molluscan nervous system.J. Physiol. 185: 684–700.Google Scholar
  98. Gershon, S.C., and Baldessarini, R.J. (1980). Motor effects of serotonin in the central nervous system.Life Sci. 27: 1435–1451.Google Scholar
  99. Glowinski, J., and Axelrod, J. (1964). Inhibition of uptake of Initiated noradrenaline in the intact rat brain by imipramine and structurally related compounds.Nature (Lond.) 204: 1318–1319.Google Scholar
  100. Goodwin, G.M., De Souza, R.J., and Green, A.R. (1985). The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT).Neuropharmacol. 24: 1187–1194.Google Scholar
  101. Graham, D., and Langer, S.Z. (1987). [3H]Tryptamine binding sites of rat cerebral cortex: Pharmacological profile and plasticity.Neuropharmacology 26: 1093–1097.Google Scholar
  102. Green, A.R., O'Shaughnessy, K., Hammond, M., Schachter, M., and Grahame-Smith, D.G. (1983). Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone.Neuropharmacol. 22: 573–578.Google Scholar
  103. Greenshaw, A.J., and Dewhurst, W.G. (1987). Tryptamine receptors: Fact, myth or misunderstanding?Brain Res. Bull. 18: 253–256.Google Scholar
  104. Hadjiconstantinou, M., Rosetti, Z., Silvia, C.P., Krajnc, D., and Neff, N.H. (1988). Aromatic L-aminoacid decarboxylase activity of the rat retina is modulated in vivo by environmental light.J. Neurochem. 51: 1560–1564.Google Scholar
  105. Hadjiconstantinou, M., Silvia, C.P., Hubble, J.P., Isaacs, L.A., Nemlinger, T.A., and Neff, N.H. (1989). Modulation of striatal aromatic L-aminoacid decarboxylase.Soc. Neurosci. (Abstr.) 15: 1313P.Google Scholar
  106. Hahn, G., Barwald, L., Schales, O., and Werner, H. (1935). Synthese von tetrahydroharman(4-Carbolin)-Derivaten unter physiologischen Bedingungen.Justus Liebigs Anal Chem. 520: 107–123.Google Scholar
  107. Handschumacher, R.E., and Vane, R. (1967). The relationship between the penetration of tryptamine and 5-hydroxytryptamine with smooth muscle and the associated contractions.Br. J. Pharmacol. Chemother. 29: 105–118.Google Scholar
  108. Harrison, R.E.W., and Christian, S.T. (1984). Individual housing stress elevates brain and adrenal tryptamine. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 249–256.Google Scholar
  109. Hayaishi, O. (1976). Properties and function of the indoleamine 2,3-dioxygenase.J. Biochem. 79: 13P.Google Scholar
  110. Heikkila, R.E., and Cohen, G. (1974). The inhibition of (3H)-biogenic amine accumulation into rat brain tissue slices by various tryptamine derivatives.Res. Commun. Chem. Path. Pharmacol. 7: 539–547.Google Scholar
  111. Herkert, E.E., and Keup, W. (1969). Excretion patterns of tryptamine, indoleacetic acid and 5-hydroxyindoleacetic acid, and their correlation with mental changes in schizophrenic patients under medication with alphamethyldopa.Psychopharmacol. (Berl.) 15: 48–59.Google Scholar
  112. Hery, F., Simonnet, G., Bourgoin, S., Soubrie, P., Artaud, F., Hamon, M., and Glowinski, J. (1979). Effect of nerve activity on the in vivo release of [3H]-serotonin continuously formed from L-[3H]-tryptophan in the caudate nucleus of the cat.Brain Res. 169: 317–334.Google Scholar
  113. Hjorth, S. (1985). Hypothermia in the rat induced by the potent serotonergic agent 8-OH-DPAT.J. Neurol Transm. 61: 131–136.Google Scholar
  114. Holm, E., Jacob, S., Kortsik, C., Leweling, H., and Fischer, B. (1988). Failure of selective serotonin re-uptake inhibition to worsen the mental state of patients with subclinical hepatic encephalopathy. In Soeters P.B., Wilson J.H.P., Meijer A.J. and Holm E. (eds.) Advances in Ammonia Metabolism and Hepatic Encephalopathy, Elsevier Scientific Publishers, Holland, pp. 474–486.Google Scholar
  115. Horn, A.S. (1973). Structure-activity relations for the inhibition of 5-HT uptake into rat hypothalamic homogenates by 5-HT and tryptamine analogues.J. Neurochem. 21:883–888.Google Scholar
  116. Houslay, M.D., and Tipton, K.F. (1974). A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes.Biochem. J. 139: 645–652.Google Scholar
  117. Ichyama, A., Nakamura, S., Nishizuka, Y., and Hayaishi, O. (1970). Enzymatic studies on the biosynthesis of 5HT in mammalian brain.J. Biol. Chem. 245: 1699–1709.Google Scholar
  118. Irons, J., Robinson, C.M., and Marsden, C.A. (1984). 5-HT involvement in tryptamine induced behaviour in mice. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 423–427.Google Scholar
  119. Isaacs, L. (1975). Temperature alteration of monoamine metabolites in cerebrospinal fluid.Nature (New Biol.) 243: 269–271.Google Scholar
  120. Jacob, J.J., and Girault, J.M. (1979). Serotonin in Body Temperature Regulation, Drug Effects and Therapeutic Implications (Eds. Lomax P. and Schombaum E.), Marcel Dekker, New York, pp. 183–230.Google Scholar
  121. Jacobs, B.L. (1976). An animal behaviour model for studying central serotonergic synapses.Life Sci. 19: 777–786.Google Scholar
  122. Jaeger, C.B., Ruggiero, D.A., Albert, V.R., Joh, T.H., and Reis, D.J. (1984a). Immunocytochemical localization of aromatic-1-amino acid decarboxylase. In Björklund A. and Hokfelt T. (eds.) Handbook of Chemical Neuroanatomy, vol. 2; Classical Transmitters in the CNS, Part 1, Elsevier, Amsterdam, pp. 387–408.Google Scholar
  123. Jaeger, C.B., Ruggiero, D.A., Albert, V.R., Park, D.H., Joh, T.H., and Reis, D.J. (1984b). Aromatic L-amino acid decarboxylase in the rat brain: Immunocytochemical localization in neurons of the brain stem.Neurosci. 11: 691–713.Google Scholar
  124. Jaeger, C.B., Teitelman, G., Joh, T.H., Albert, V.R., Park, D.H., and Reis, D.J. (1983). Some neurons of the rat central nervous system contain aromatic L-amino acid decarboxylase but not monoamines.Science 219:1233–1235.Google Scholar
  125. Jellinger, K., and Riederer, P. (1977). Brain monoamines in metabolic (endotoxic) coma: a preliminary biochemical study in human post-mortem material.J. Neural Transm. 41: 275–286.Google Scholar
  126. Jepson, J.B., Zaltzman, P., and Udenfriend, S. (1962). Microsomal hydroxylation of tryptamine, indoleacetic acid and related compounds to 6-hydroxy derivatives.Biochem. Biophys. Acta 62: 91–102.Google Scholar
  127. Jones, R.S.G. (1981).In vivo pharmacological studies on the interactions between tryptamine and 5-hydroxytryptamine.Br. J. Pharmacol. 73: 485–493.Google Scholar
  128. Jones, R.S.G. (1982a). A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat.Neuropharmacol. 21: 209–214.Google Scholar
  129. Jones, R.S.G. (1982b). Responses of cortical neurones to stimulation of the nucleus raphé medianus: A pharmacological analysis of the role of indoleamines.Neuropharmacol. 21: 511–520.Google Scholar
  130. Jones, R.S.G. (1982c). Tryptamine modifies cortical neurone responses evoked by stimulation of nucleus raphé medianus.Brain Res. Bull. 8: 435–437.Google Scholar
  131. Jones, R.S.G. (1982d). Tryptamine: A neuromodulator or neurotransmitter in mammalian brain?.Prog. Neurobiol. 19: 117–139.Google Scholar
  132. Jones, R.S.G. (1984). Trace amine-peptide interactions on central neurons: 1. Tryptamine and substance P. In Boulton A.A., Baker G.B. Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioural and Clinical Aspects, Humana Press, Clifton, N.J., pp. 321–326.Google Scholar
  133. Jones, R.S.G., and Boulton, A.A. (1981). Tryptamine and 5-hydroxytryptamine's actions and interactions on cortical neurones in the rat.Life Sci. 27: 1849–1856.Google Scholar
  134. Jones, R.S.G., and Broadbent, J. (1982a). Differential effects of fluoxetine and zimelidine on the uptake of 5-hydroxytryptamine and tryptamine by cortical slices and on responses of cortical neurones to stimulation of the nucleus raphé medianus.Eur. J. Pharmacol. 81: 681–685.Google Scholar
  135. Jones, R.S.G., and Broadbent, J. (1982b). Further studies on the role of indoleamines in responses of cortical neurones evoked by stimulation of the nucleus raphé medianus: The effects of precursor loading.Neuropharmacol. 21: 1273–1278.Google Scholar
  136. Juorio, A.V. (1982). The effects of some antipsychotic drugs, D-amphetamine and reserpine in the concentration and rate of accumulation of tryptamine and 5-hydroxytryptamine in the mouse striatum.Can. J. Physiol. Pharmacol. 60: 376–380.Google Scholar
  137. Juorio, A.V. (1984). Drug-induced changes in the central metabolism of tyramine and other trace monoamines: their possible role in brain functions. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 145–162.Google Scholar
  138. Juorio, A.V., and Durden, D.A. (1984). The distribution and turnover of tryptamine in the brain and spinal cord.Neurochem. Res. 9: 1283–1293.Google Scholar
  139. Juorio, A.V., and Greenshaw, A.J. (1985). Tryptamine concentrations in areas of 5-hydroxytryptamine terminal innervation after electrolytic lesions of midbrain raphé nuclei.J. Neurochem. 45: 422–426.Google Scholar
  140. Juorio, A.V., and Greenshaw, A.J. (1986). Tryptamine depletion in the rat striatum following electrolytic lesions of the substantia nigra.Brain Res. 371: 386–389.Google Scholar
  141. Juorio, A.V., and Paterson, I.A. (1990). Tryptamine may couple dopaminergic and serotonergic transmission in the brain.Gen. Pharmacol. 21: 613–616.Google Scholar
  142. Juorio, A.V., Greenshaw, A.J., and Nguyen, T.V. (1987a). Effect of intranigral administration of 6-hydroxydopamine and 5,7-dihydroxytryptamine on rat brain tryptamine.J. Neurochem. 48: 1346–1350.Google Scholar
  143. Juorio, A.V., Li, X.M., and Boulton, A.A. (1990). The effects of chronic trimipramine treatment on biogenic amine metabolism and on dopamine D2, 5-HT2 and tryptamine binding sites in rat brain.Gen. Pharmacol. 21: 759–762.Google Scholar
  144. Juorio, A.V., Walz, W., and Sloley, B.D. (1987b). Absence of decarboxylation of some aromatic-L-amino acids by cultured astrocytes.Brain Res. 426: 183–186.Google Scholar
  145. Karasawa, A., Serikyaku, S., and Ishitani, R. (1986). Temperature-sensitive high affinity [3H]tryptamine binding sites in rat brain.Life Sci. 38: 1331–1337.Google Scholar
  146. Kaulen, P., Brüning, G., Rommelspacher, H., and Baumgarten, H.G. (1986). Characterization and quantitative autoradiography of [3H]tryptamine binding sites in rat brain.Brain Res. 366: 72–88.Google Scholar
  147. Kellar, K.J., and Cascio, C.S. (1982). [3H]Tryptamine: high affinity binding sites in rat brain.Eur. J. Pharmacol. 78: 475–478.Google Scholar
  148. Kellar, K.J., and Cascio, C.S. (1986). Tryptamine and phenylethylamine recognition sites in brain. In Boulton A.A., Baker G.B. and Hrdina P.D. (eds.) Neuromethods vol. 4: Receptor Binding, Humana Press, Clifton, N.J., pp. 119–137.Google Scholar
  149. Kienzl, E., Riederer, P., Jellinger, K., and Noller, H. (1984).14C-Tryptamine binding in Parkinson's disease and hepatic coma. In Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 571–580.Google Scholar
  150. Kienzl, E., Riederer, P., Jellinger, K., and Noller, H. (1985). A physicochemical approach to characterise [3H]tryptamine binding sites in human brain. In Boulton A.A., Bieck P.R., Maitre L. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines, Humana Press, Clifton, N.J., pp. 469–485.Google Scholar
  151. Klein, D.F. (1968). Psychiatric diagnosis and typology of clinical drug effects.Psychopharmacol. 13: 359–386.Google Scholar
  152. Knell, A.J., Davidson, A.R., Williams, R., Kantamanemi, B.D., and Curzon, G. (1974). Dopamine and serotonin metabolism in hepatic encephalopathy.Brit. Med. J. 1: 549–551.Google Scholar
  153. Knott P.J., Marsden C.A. and Curzon G. (1974). Comparative studies of brain 5HT and tryptamine.Adv. Biochem. Psychopharmacol. 11: 109–114.Google Scholar
  154. Krnjevic, K., and Phillis, J.W. (1963). Actions of certain amines on cerebral cortical neurones.Br. J. Pharmacol. 20: 471–490.Google Scholar
  155. Kuehl, P.A., VandenHeuvel, W.J.A., and Ormond, R.E. (1968). Urinary metabolites in Parkinson's Disease.Nature 217: 471–490.Google Scholar
  156. Kuhn, R. (1957). Über die Behandlung depressiver Zustande mit einem Iminodibenzylderivat (G 22355).Schweiz. Med. Wockenschr. 87: 1135–1140.Google Scholar
  157. Lal, S., Quirion, R., Fafaille, F., Nair, N.P.V., Loo, P., Braunwalder, A., Wood, P., and Williams, M. (1987). Muscarinic, benzodiazepine, GABA, chloride channel and other binding sites in frontal cortex in hepatic coma in man.Prog. Neuro-Psychopharmacol. Biol. Psychiat. 11: 243–250.Google Scholar
  158. Larson, A.A. (1983). Hyperalgesia produced by the intrathecal administration of tryptamine to rats.Brain Res. 265: 109–117.Google Scholar
  159. Larson, A.A. (1985). Distribution of CNS sites sensitive to tryptamine and serotonin in pain processing. In Boulton A.A., Bieck P.R., Maitre L. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines: Experimental and Clinical Aspects, Humana Press, Clifton, N.J., pp. 241–250.Google Scholar
  160. Larson, A.A., and Wilcox, G.L. (1984). Synergistic behavioural effects of serotonin and tryptamine injected intrathecally in mice.Neuropharmacol. 23: 1415–1418.Google Scholar
  161. Levine, R.J., Oates, J.A., Vendsalu, A., and Sjoerdsma, A. (1962). Studies on the metabolism of aromatic amines in relation to altered thyroid function in man.J. Clin. Endocrinol. Metab. 22: 1242–1250.Google Scholar
  162. Leysen, J.E., Niemegeers, C.J.E., Tollenaere, J.P., and Laduron, P.M. (1978). Serotonergic component of neuroleptic receptors.Nature 272: 163–166.Google Scholar
  163. Locock, R.A., Baker, G.B., Coutts, R.T., Dewhurst, W.G., and Liu, T.T.S. (1985). Interaction of trace amines with serotonin recognition sites in rat brain. In Boulton A.A., Bieck P.R., Maitre L. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines: Experimental and Clinical Aspects, Humana Press, Clifton, N.J., pp. 195–200.Google Scholar
  164. Luscombe, G., Jenner, P., and Marsden, C.D. (1982). Tryptamine-induced myoclonus in guinea-pigs pretreated with a monoamine oxidase inhibitor indicates pre- and post-synaptic actions of tryptamine upon central indoleamine systems.Neuropharmacol. 21: 1257–1265.Google Scholar
  165. Mandell, A.J., and Morgan, M. (1971). Indole(ethyl)amine N-methyltransferase in human brain.Nature 230: 85.Google Scholar
  166. Mandell, A.J., Slater, G.G., and Mersol, I. (1961). Indole-like urinary stress reactant in man.Science 133: 1832.Google Scholar
  167. Marien, M.R., Gerber, R., Boyar, W.C., and Altar, C.A. (1987). Injections of deuterated tryptamine into the nucleus accumbens of the rat: Effects on locomotor activity and monoamine metabolism.Neuropharmacol. 26: 1481–1488.Google Scholar
  168. Marley, E., and Nitisco, G. (1975). Tryptamines and some other substances affecting waking and sleep in fowls.Br. J. Pharmacol. 53: 193–205.Google Scholar
  169. Marsden, C.A., and Curzon, G. (1974). Effects of lesions and drugs on brain tryptamine.J. Neurochem. 23: 1171–1176.Google Scholar
  170. Marsden, C.A., and Curzon, G. (1979). The role of tryptamine in the behavioural effects of tranylcypromine+L-tryptophan.Neuropharmacol. 18: 159–164.Google Scholar
  171. Martin, L.L., Baker, G.B., and Wood, P.L. (1988). Tryptamine turnover: Effects of drugs. In Boulton A.A., Juorio A.V. and Downer R.G.H. (eds.) Trace Amines: Comparative and Clinical Neurobiology, Humana Press, Cliton, N.J., pp. 96–104.Google Scholar
  172. Martin, L.L., Neale, R.F., and Wood, P.L. (1987). Down-regulation of tryptamine receptors following chronic administration of clorgyline.Brain Res. 419: 239–243.Google Scholar
  173. Martin, L.L., Roland, D.M., Neale, R.F., and Wood, P.L. (1984).3H-Tryptamine binding in rat brain: Effects of phenylalkylamine derivatives.Pharmacologist 26: 135.Google Scholar
  174. McCormack, J.K., Bietz, A.J., and Larson, A.A. (1986). Autoradiographic localisation of tryptamine binding sites in the rat and dog central nervous system.J. Neurosci. 6: 94–101.Google Scholar
  175. McGeer, P.L., Eccles, Sir J.C., and McGeer, E.G. (Eds.) (1979). Molecular Neurobiology of the Mammalian Brain, Plenum Press, New York, p. 362.Google Scholar
  176. Meek, J.L., Krall, A.R., and Lipton, M.A. (1970). Psychotropic drugs and the metabolism of intracerebrally injected tryptamine, 5-hydroxytryptamine, and norepinephrine.J. Neurochem. 17: 1627–1635.Google Scholar
  177. Modigh, K. (1972). Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice.Psychopharmacol. 23: 48–54.Google Scholar
  178. Moroni, F., Lombardi, G., Carlà, V., Pellegrini, D., Carassale, G.L., and Cortesini, C. (1986). Content of quinolinic acid and of other tryptophan metabolites increases in brain regions of rats used as experimental models of hepatic encephalopathy.J. Neurochem. 46: 869–874.Google Scholar
  179. Mounsey, I., Brady, K.A., Carroll, J., Fisher, R., and Middlemiss, D.N. (1982). K+-evoked [3H]-5-HT release from rat frontal cortex slices: The effect of 5-HT agonists and antagonists.Biochem. Pharmacol. 31: 49–53.Google Scholar
  180. Mousseau, D.D., McManus, D.J., Baker, G.B., Juorio, A.V., Dewhurst, W.G., and Greenshaw, A.J. (1993). Effects of age and of chronic antidepressant treatment on [3H]-tryptamine binding to rat cortical membranes.Cell. Molec. Neurobiol. 13: 3–13.Google Scholar
  181. Murphy, D.L., Tamarkin, L., Garrick, N.A., Taylor, P.L., and Markey, S.P. (1985). Trace indoleamines in the central nervous system. In Boulton A.A., Bieck P.R., Maitre L. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines: Experimental and Clinical Aspects, Humana Press, Clifton, N.J., pp. 343–360.Google Scholar
  182. Namboodiri, M.A.A., Dubbels, R., and Klein, D.C. (1987). Purification of pineal arylalkylamine N-acetyltransferase (mammalian pineal gland). In Kaufmann S. (ed.) Methods in Enzymology, vol. 142, pp. 583–590.Google Scholar
  183. Neff, N.H., and Yang, H.-Y.T. (1974). Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs.Life Sci. 14: 2061–2074.Google Scholar
  184. Nguyen, T.V., and Juorio, A.V. (1989a). Binding sites for brain trace amines.Cell. Molec. Neurobiol. 9: 297–311.Google Scholar
  185. Nguyen, T.V., and Juorio, A.V. (1989b). Down-regulation of tryptamine binding sites following chronic molindone administration.Naunyn-Schmiedeberg's Arch. Pharmacol. 340: 366–371.Google Scholar
  186. Nguyen, T.V., Paterson, I.A., Juorio, A.V., Greenshaw, A.J., and Boulton, A.A. (1989). Tryptamine receptors: Neurochemical and electrophysiological evidence for postsynaptic and functional binding sites.Brain Res. 476: 85–93.Google Scholar
  187. Oldendorf, W.H. (1971). Brain uptake of radiolabeled essential amino acids by brain following arterial injection.Proc. Soc. Exptl. Biol. Med. 136: 385–386.Google Scholar
  188. Oldendorf, W.H., and Braun, L.D. (1976). [3H]-Tryptamine and [3H]-water as diffusible internal standards for measuring brain extraction of radio-labeled substances following carotid injection.Brain Res. 113: 219–224.Google Scholar
  189. Oreland, L., Arai, Y., and Stenstrom, A. (1983). The effect of deprenyl (seliginine) on intra- and extraneuronal dopamine oxidation.Acta Neurol. Scand. (Suppl) 95: 81–85.Google Scholar
  190. Ortmann, R.S., Bischoff, S., Radeke, E., Beuch, O., and Delini-Stula, A. (1982). Correlations between different measures of antiserotonin activity of drugs. Study with neuroleptics and serotonin receptor blockers.Naunyn-Schmiedeberg's Arch. Pharmacol. 321: 265–270.Google Scholar
  191. Osborne, N.N. (1980). Specificity of serotonin uptake by bovine retina: Comparison with tryptamine.Exp. Eye Res. 31: 31–39.Google Scholar
  192. Osborne, N.N., and Hogben, M. (1988). The effects of various indoles on the stimulation of inositol phosphate formation in rat cortical slices. In Boulton A.A., Juorio A.V. and Downer R.G.H. (eds.) Trace Amines: Comparative and Clinical Neurobiology, Humana Press, Clifton, N.J., pp. 251–260.Google Scholar
  193. Osborne, N.N., Cutcliffe, N., and Peard, A. (1986). Trace amines (ethylamine, octopamine, and tryptamine) stimulate inositol phospholipid hydrolysis in rat cerebral cortex slices.Neurochem. Res. 11: 1525–1531.Google Scholar
  194. Pang, S.F., Brown, G.M., Grota, L.J., Chambers, J.W., and Rodman, R.L. (1977). Determination of N-acetylserotonin and melatonin activities in the pineal gland, retina, Harderian gland, brain and serum of rats and chickens.Neuroendocrinol. 23: 1–13.Google Scholar
  195. Paterson, I.A., Juorio, A.V., and Boulton, A.A. (1990). 2-Phenylethylamine: A modulator of catecholamine transmission in the mammalian central nervous system?J.Neurochem. 55: 1827–1837.Google Scholar
  196. Perry, D.C., Grimm, L.J., Kettler, K.G., and Kellar, K.J. (1988). [3H]Tryptamine binding sites are not identical to monoamine oxidase in rat brain.J. Neurochem. 51: 1535–1540.Google Scholar
  197. Perry, D.C. (1986). [3H]Tryptamine autoradiography in rat brain and choroid plexus reveals two distinct sites.J. Pharmacol. Exp. Therap. 236: 548–559.Google Scholar
  198. Perry, D.C., Manning, D.C., and Snyder, S.H. (1982).In vivo autoradiographic localisation of [3H]tryptamine binding sites in rat brain.Soc. Neurosci. Abstr. 8: 783.Google Scholar
  199. Perry, T.L. (1962). Urinary excretion of amines in phenylketonuria and Mongolism.Science 136: 879–890.Google Scholar
  200. Peura, P., Faull, K.F., and Barchas, J.D. (1988). Determination of tryptamine in rat brain by gas chromatography-mass spectrometry.J. Pharmacol. Biomed. Analysis 6: 821–825.Google Scholar
  201. Peura, P., Johnson, J.V., Yost, R.A., and Faull, K.F. (1989). Concentrations of tryptoline and methtryptoline in rat brain.J. Neurochem. 52: 847–852.Google Scholar
  202. Philips, S.R. (1984). Analysis of trace amines: endogenous levels and the effects of various drugs on tissue concentrations in the rat. In Boulton A.A., Baker G.B., Dewhurst W.O. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioral and Clinical Aspects, Humana Press, Clifton, N.J., pp. 127–144.Google Scholar
  203. Philips, S.R., and Boulton, A.A. (1979). The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum.J. Neurochem. 33: 159–167.Google Scholar
  204. Philips, S.R., Baker, G.B., and McKim, H.R. (1980). Effects of tranylcypromine on the concentrations of some trace amines in the diencephalon and hippocampus of the rat.Experientia 36: 241–242.Google Scholar
  205. Philips, S.R., Durden, D.A., and Boulton, A.A. (1974). Identification and distribution of tryptamine in the rat.Can. J. Biochem. 52: 447–451.Google Scholar
  206. Philips, S.R., Rozdilsky, B., and Boulton, A.A. (1978). Evidence for the presence of m-tyramine, p-tyramine, tryptamine and phenylethylamine in the rat brain and several areas of human brain.Biol. Psychiat. 13: 51–57.Google Scholar
  207. Pijnenburg, A.J.J., Konig, W.M.M., van der Heyden, J.A.M., and van Rossum, J.M. (1976). Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity.Eur. J. Pharmacol. 35: 45–58.Google Scholar
  208. Quock, R.M., and Weick, B.G. (1978). Tryptamine-induced drug effects insensitive to serotonin antagonists: Evidence of a specific tryptaminergic receptor stimulation?J. Pharm. Pharmacol. 30: 280–283.Google Scholar
  209. Robinson, C.M., and Marsden, C.A. (1984). Tryptamine-induced changes in endogenous 5-hydroxytryptamine and [3H]-5-HT release from mouse hypothalamic slices. In Boulton A.A., Baker G.B. Dewhurst W.G. and Sandler M. (eds.) Neurobiology of the Trace Amines: Analytical, Physiological, Pharmacological, Behavioural and Clinical Aspects, Humana Press, Clifton, N.J., pp. 265–270.Google Scholar
  210. Rodnight, R. (1961). Body fluid indoles in mental illness.Int. Rev. Neurobiol. 5: 251–292.Google Scholar
  211. Rommelspacher H., Brüning G., Susilo R., Nick M. and Hill R. (1985). Pharmacology of harmalan (1-methyl-3,4-dihydro-β-carboline).Eur. J. Pharmacol. 109: 363–371.Google Scholar
  212. Rosengren E. (1960). Are DOPA decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes?Acta Physiol. Scand. 49: 364–369.Google Scholar
  213. Ross, S.B., and Ask, A.-L. (1980). Structural requirements for uptake into serotonergic neurones.Acta Pharmacol. Toxicol. 46: 270–277.Google Scholar
  214. Rossetti, Z., Silvia, C.P., Krajnc, D., Neff, N.H., and Hadjiconstantinou, M. (1990). Aromatic L-aminoacid decarboxylase is modulated by D1 receptors in the rat retina.J. Neurochem. 54: 787–791.Google Scholar
  215. Saavedra, J.M., and Axelrod, J. (1972). Psychomimetic N-methylated tryptamines: formation in brain in vivo and in vitro.Science 175: 1365–1366.Google Scholar
  216. Saavedra, J.M., and Axelrod, J. (1973). Effects of drugs on the tryptamine content of rat tissues.J. Pharmacol. Exp. Therap. 185: 523–529.Google Scholar
  217. Saavedra, J.M., and Axelrod, J. (1974). Brain tryptamine and the effects of drugs.Adv. Biochem. Psychopharmacol. 10: 135–139.Google Scholar
  218. Saavedra, J.M., Heller, B., and Fischer, E. (1970). Antagonistic effects of tryptamine and β-phenylethylamine on the behaviour of rodents.Nature 226: 868.Google Scholar
  219. Sabelli, H.C., and Mosnaim, A.D. (1974). Phenylethylamine hypothesis of affective disorder.Amer. J. Psychiat. 131: 695–699.Google Scholar
  220. Saito, M., Seikyaku, S., and Ishitani, R. (1991). Effect of phospholipase A2 on temperature-induced high-affinity [3H]-tryptamine binding sites in rat brain.Japan. J. Pharmacol. 56: 413–419.Google Scholar
  221. Schain, R.J. (1961). Some effects of a monoamine oxidase inhibitor upon changes produced by centrally administered monoamines.Br. J. Pharmacol. 17: 261–266.Google Scholar
  222. Schildkraut, J.J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence.Amer. J. Psychiat. 122: 509–522.Google Scholar
  223. Seeman, P., Westman, K., Coscina, D., and Warsh, J.J. (1980). Serotonin receptors in hippocampus and frontal cortex.Eur. J. Pharmacol. 66: 179–191.Google Scholar
  224. Segonzac, A., Raisman, R., Tateishi, T., Schoemaker, H., Hicks, P.E., and Langer, S.Z. (1985). Tryptamine, a substrate for the serotonin transporter in human platelets, modifies the dissociation kinetics of [3H]imipramine binding: Possible allosteric interaction.J. Neurochem. 44: 349–356.Google Scholar
  225. Segonzac, A., Tateishi, T., and Langer, S.Z. (1984). Saturable uptake of [3H]-tryptamine in rabbit platelets is inhibited by 5-hydroxytryptamine uptake blockers.Naunyn-Schmiedeberg's Arch. Pharmacol. 328: 33–37.Google Scholar
  226. Serikyaku, S., and Ishitani, R. (1988). Glutaraldehyde pretreatment blocks temperature-induced high-affinity [3H]tryptamine binding.Life Sci. 42: 207–214.Google Scholar
  227. Selikoff, I.J., Robitzek, E.H., and Orenstein, G.G. (1952). Treatment of pulmonary tuberculosis with hydrazine derivatives of isonicotinic acid.J. Amer. Med. Assoc. 150: 973–980.Google Scholar
  228. Sette, M., Briley, M.S., and Langer, S.Z. (1983). Complex inhibition of [3H]imipramine binding by serotonin and non-tricyclic serotonin uptake blockers.J. Neurochem. 40: 622–628.Google Scholar
  229. Shah, N.S., Donald, A.G., and Freed, J.E. (1973). Influence of imipramine, phenothiazines, cations and ATP on accumulation of radiolabeled 5-hydroxytryptamine and tryptamine by rat brain particulate fraction.Pharmacol. Res. Commun. 5: 259–264.Google Scholar
  230. Slingsby, J.M., and Boulton, A.A. (1976). Separation and quantitation of some urinary arylalkylamines.J. Chromatogr. 123: 51–56.Google Scholar
  231. Sloan, J.W., Martin, W.R., Clements, T.H., Buchwald, W.F., and Bridges, S.R. (1975). Factors affecting brain and tissue levels of tryptamine: Species, drugs and lesions.J. Neurochem. 24: 523–532.Google Scholar
  232. Smith, I. and Kellow, A.H. (1969). Aromatic amines and Parkinson's disease.Nature 221: 1261.Google Scholar
  233. Smith, S.A., and Pogson, C.I. (1977). Tryptophan and the control of plasma glucose concentraions in the rat.Biochem. J. 168: 495–501.Google Scholar
  234. Snodgrass, S.R., and Horn, A.S. (1973). An assay procedure for tryptamine in brain and spinal cord using its [3H]-dansyl derivative.J. Neurochem. 21: 687–696.Google Scholar
  235. Snodgrass, S.R., and Iversen, L.L. (1974). Formation and release of3H-tryptamine from3H-tryptophan in rat spinal cord slices.Adv. Biochem. Psychopharmacol. 10: 141–150.Google Scholar
  236. Sourkes, T.L. (1978). Tryptophan in hepatic coma.J. Neurol Transm. 14 (Suppl.): 79–86.Google Scholar
  237. Sprince, H., Parker, C.M., Jamesom, D., and Alexander, F. (1963). Urinary indoles in schizophrenic and psychoneurotic patients after administration of tranylcypromine (Parnate) and methionine or tryptophan.J Nerv. Ment. Dis. 137: 246–251.Google Scholar
  238. Squires, R.F. (1978). Monoamine oxidase inhibitors: Animal pharmacology. In Iversen L.L., Iversen S.D. and Snyder S.H. (eds.) Handbook of Psychopharmacology, vol 14., Plenum Press, New York, pp. 1–58.Google Scholar
  239. Stenström, A., Arai, Y., and Oreland, L. (1985). Intra- and extraneuronal monoamine oxidase-A and -B activities after central axotomy (hemisection) on rats.J. Neurol Transm. 61: 105–113.Google Scholar
  240. Stollak, J.S., and Furchgott, R.F. (1983). Use of selective antagonists for determining the types of receptor mediating the actions of 5-hydroxytryptamine in the isolated rabbit aorta.J. Pharmacol. Exp. Therap. 224: 215–221.Google Scholar
  241. Strolin-Benedetti, M., and Dostert, P. (1989). Monoamine oxidase, brain ageing and degenerative diseases.Biochem. Pharmacol. 38: 555–561.Google Scholar
  242. Sugimoto, Y., Yamada, J., and Horisaka, K. (1986). Strain differences in the behaviour induced by tryptamine in five strains of mice.Neuropharmacol. 25: 1289–1291.Google Scholar
  243. Sullivan, J.P., McDonnell, L., Hardiman, O.M., Farrell, M.A., Philips, J.P., and Tipton, K.F. (1986). The oxidation of tryptamine by the two forms of monoamine oxidase in human tissues.Biochem. Pharmacol. 35: 3255–3260.Google Scholar
  244. Sullivan, M.X. (1922). Indolethylamine in the urine of pellagrins.J. Biol. Chem. 50: xxxix.Google Scholar
  245. Susilo, R., and Rommelspacher, H. (1987). Formation of a β-carboline (1,2,3,4-tetrahydro-1-methyl-β-carboline-1-carboxylic acid) following intracerebroventricular injection of tryptamine and pyruvic acid.Naunyn-Schmiedeberg's Arch. Pharmacol. 335: 70–76.Google Scholar
  246. Susilo, R., Damm, H., and Rommelspacher, H. (1988). Formation of a new biogenic aldehyde adduct by incubation of tryptamine with rat brain tissue.J. Neurochem. 50: 1817–1824.Google Scholar
  247. Suzuki, O., Katsumata, Y., and Oya, M. (1981). Characterization of eight biogenic indoleamines as substrates for type A and type B monoamine oxidase.Biochem. Pharmacol. 30: 1353–1358.Google Scholar
  248. Svensson, K., and Ahlenius, S. (1983). Suppression of exploratory locomotor activity by the local application of dopamine or 1-noradrenaline to the nucleus accumbens of the rat.Pharmacol. Biochem. Behav. 19: 693–699.Google Scholar
  249. Svensson, K., Larsson, K., Ahlenius, S., Arvidsson, L.E., and Carlsson, A. (1987). Evidence for a facilatory role of central 5-HT in male mouse sexual behaviour. In Dourish C.T., Ahlenius S., and Hutson P.H. (eds.) Brain 5-HT1A Receptors, Ellis Horwood Ltd., Chichester, pp. 199–210.Google Scholar
  250. Tedeschi, D.H., Tedeschi, R.E., and Fellows, E.J. (1959). The effects of tryptamine in the central nervous system, including a pharmacological procedure for evaluation of iproniazid-like drugs.J. Pharmacol. Exp. Therap. 126: 223–232.Google Scholar
  251. Tricklebank, M.D., Forler, C., and Fozard, J.R. (1984). The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic system in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat.Eur J. Pharmacol. 106: 271–282.Google Scholar
  252. Turner, W.J., and Merlis, S. (1959). Effect of some indolealkylamines on man.Arch. Neurol. Psychiat. 81: 121–129.Google Scholar
  253. Usdin, E., and Sandler, M. (Eds.) (1976). Trace Amines and the Brain, Marcel Dekker, New York, N.Y.Google Scholar
  254. Van Neuten, J.M., Janssen, P.A.J., Van Beek, J., Xhonneux, R., Verbeuren, T.J., and Vanhoutte, P.M. (1981). Vascular effects of ketanserin (R41468) — a novel antagonist of 5-HT2 serotonergic receptors.J. Pharmacol. Exp. Therap. 218: 217–230.Google Scholar
  255. Voisin, P., Namboodiri, M.A.A., and Klein, D.C. (1984). Arylamine and arylalkylamine N-acetyltransferase in the mammalian pineal gland.J. Biol. Chem. 259: 10913–10918.Google Scholar
  256. Waldmeier, P.C., Felner, A.E., and Maitre, L. (1981). Long term effects of selective MAO inhibitors on MAO activity and amine metabolism. In M.B.H. Youdim and E.S. Paykel (eds.) Monoamine Oxidase Inhibitors: The State of the Art, John Wiley and Sons, Chichester, U.K., p. 87–109.Google Scholar
  257. Walker, R.W., Mandel, L.R., Kleinman, J.E., Gillin, J.C., Wyatt, R.J., and VandenHeuvel, W.J.A. (1979). Improved selective ion monitoring mass-spectrometry assay for the determination of N,N-dimethyltryptamine in human blood utilizing capillary column gas chromatography.J. Chromatogr. 162: 539–546.Google Scholar
  258. Wallace, M. A., and Claro, E. (1990). Comparison of serotonergic to muscarinic cholinergic stimulation of phosphoinositide-specific phospholipase C in rat brain cortical membranes.J. Pharmacol. Exp. Therap. 255: 1296–1300.Google Scholar
  259. Warsh, J.J., Coscina, D.V., Godse, D.D., and Chan, P.W. (1979). Dependence of brain tryptamine formation on tryptophan availability.J. Neurochem. 32: 1191–1196.Google Scholar
  260. Warsh, J.J., Godse, D.D., Stancer, H.C., Chan, P.W., and Coscina, D.V. (1977). Brain tryptamine in rats by a new gas chromatography-mass fragmentographic method.Biochem. Med. 18: 10–20.Google Scholar
  261. Weinstock, M., Speiser, Z., and Ashkenazi, R. (1978). Changes in brain catecholamine turnover and receptor sensitivity induced by social deprivation in rats.Psychopharmacol. 56: 205–209.Google Scholar
  262. Weissbach, H., King, W., Sjoerdsma, A., and Udenfriend, S. (1959). Formation of indole-3-acetic acid and tryptamine in animals.J. Biol. Chem. 234: 81–86.Google Scholar
  263. Weissbach, H., Lovenberg, W., Redfield, B.G., and Udenfriend, S. (1961). In vivo metabolism of serotonin and tryptamine: effect of monoamine oxidase inhibition.J. Pharmacol. Exp. Therap. 131: 26–30.Google Scholar
  264. Wennogle, L.P., and Meyerson, L. (1983). Serotonin modulates the dissociation of [3H]-imipramine from human platelets recognition sites.Eur. J. Pharmacol. 86: 303–307.Google Scholar
  265. Whittaker V.P. (1969). The synaptosome. In Lajtha A. (ed.) Handbook of Neurochemistry, Vol. 2, Plenum Publishing Corp., New York, pp. 327–364.Google Scholar
  266. Wiltfang, J., Thiele, G., Weissenborn, K., Huther, G., Reimer, A., Pogeler, B., Kanzler, H., Schmidt, F.-W., and Wiltfang, A. (1991). Early hepatic encephalopathy, neurophysiological assessment and correlation with biochemical parameters. In Bengtsson F., Jeppson B., Almdal T. and Vilstrup H. (eds.) Hepatic Encephalopathy and Metabolic Nitrogen Exchange, CRC Press, Boston, pp. 49–58.Google Scholar
  267. Wood, P.L., Martin, L.L., and Altar, C.A. (1985). [3H]Tryptamine receptors in rat brain. In Boulton A.A., Maitre L., Bieck P.R. and Riederer P. (eds.) Neuropsychopharmacology of the Trace Amines, Humana Press, Clifton, N.J., pp. 101–114.Google Scholar
  268. Wood, P.L., Pilapil, C., LaFaille, F., Nair, N.P.V., and Glennon, R.A. (1984). Unique [3H]tryptamine binding sites in rat brain: Distribution and pharmacology.Arch. Int. Pharmacodyn. 268: 194–201.Google Scholar
  269. Wooley, D.W., and Shaw, E. (1957). Differentiation between receptors for serotonin and tryptamine by means of exquisite sensitivity of antimetabolites.J. Pharmacol. Exp. Therap. 121: 13–17.Google Scholar
  270. Wu, P.H., and Boulton, A.A. (1973). Distribution and metabolism of tryptamine in the rat brain.Can. J. Biochem. 51: 1104–1112.Google Scholar
  271. Xu, J., and Chuang, D.-M. (1987). Serotonergic, adrenergic and histaminergic receptors coupled to phospholipase C in cultured cerebellar granule cells of rats.Biochem. Pharmacol. 36: 2353–2358.Google Scholar
  272. Yamada, J., Sugimoto, Y., and Horikasa, K. (1987a). The behavioural effects of intravenously administered tryptamine in mice.Neuropharmacol. 26: 49–53.Google Scholar
  273. Yamada, J., Sugimoto, Y., and Horisaka, K. (1988). The behavioural effects of 8-hydroxy-2-(di-n-propylamino)tetralin in mice.Eur. J. Pharmacol. 154: 299–304.Google Scholar
  274. Yamada, J., Sugimoto, Y., and Horisaka, K. (1989). The evidence for the involvement of the 5-HT1A receptor in the 5-HT syndrome induced in mice by tryptamine.Japan J. Pharmacol. 51: 421–424.Google Scholar
  275. Yamada, J., Sugimoto, Y., Kimura, I., Takeuchi, N., and Horisaka, K. (1990). The activation of serotonin receptors by tryptamine induces hyperinsulinemia in mice.Eur. J. Pharmacol. 181: 319–322.Google Scholar
  276. Yamada, J., Sugimoto, Y., Kimura, I., Takeuchi, N., and Horisaka, K. (1988). The hypoglycemic effect of tryptamine in mice: mediation by 5-HT receptors.Eur. J. Pharmacol. 156: 299–301.Google Scholar
  277. Yamada, J., Wakita, H., Sugimoto, Y., and Horisaka, K. (1987a). Hypothermia induced in mice by intracerebroventricular injection of tryptamine: Involvement of the 5-HT1 receptor.Eur. J. Pharmacol. 139: 117–119Google Scholar
  278. Young, S.N., Anderson, G.M., Gauthier, S., and Purdy, W.C. (1980a). The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid.J. Neurochem. 34: 1087–1092.Google Scholar
  279. Young, S.N., Anderson, G.M., and Purdy, W.C. (1980b). Indoleamine metabolism in rat brain studied through measurements of tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in cerebrospinal fluid.J. Neurochem. 34: 308–315.Google Scholar
  280. Young, S.N., and Lal, S. (1980). CNS tryptamine metabolism in hepatic coma.J. Neural Transm. 47: 153–161.Google Scholar
  281. Young, S.N., Gauthier, S., Kiely, M.E., Lal, S., and Brown, G.M. (1984). Effect of oral melatonin administration on melatonin, 5-hydroxyindoleacetic acid, indoleacetic acid, and cyclic nucleotides in human cerebrospinal fluid.Neuroendocrin. 39: 87–92.Google Scholar
  282. Zeller, E.A., Barsky, J., Fouts, J.R., Kircheimer, W.F., and Van Orden, L.S. (1952). Influence of isonicotinic acid hydrazide (INH) and 1-isonicotinyl-2-isopropyl hydrazide (IIH) on bacterial and mammalian enzymes.Experientia 8: 349–350.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Darrell D. Mousseau
    • 1
  1. 1.Neuroscience Research Unit, André-Viallet Clinical Research CenterHôpital St-Luc University of MontréalMontréalCanada

Personalised recommendations