Using euler partitions to edge color bipartite multigraphs

  • Harold N. Gabow
Article

Abstract

An algorithm for finding a minimal edge coloring of a bipartite multigraph is presented. The algorithm usesO(V1/2ElogV + V) time andO(E + V) space. It is based on a divide-and-conquer strategy, using euler partitions to divide the graph. A modification of the algorithm for matching is described. This algorithm finds a maximum matching of a regular bipartite graph with all degrees 2n, inO(E + V) time andO(E + V) space.

Key words

Edge coloring euler partition matching divide-and-conquer multigraph regular bipartite graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, Mass., 1974).Google Scholar
  2. 2.
    C. Berge,Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).Google Scholar
  3. 3.
    M. A. H. Dempster, “Two Algorithms for the Time-Table Problem,” inCombinatorial Mathematics and Its Applications, D. J. A. Welsh, Ed. (Academic Press, London, 1969), pp. 63–85.Google Scholar
  4. 4.
    C. C. Gotlieb, “The Construction of Class-Teacher Time-Tables,”Proc. IFIP Congress 62, Munich (North-Holland, Amsterdam, 1963), pp. 73–77.Google Scholar
  5. 5.
    J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs,”SIAM J. Comput. 2(4):225–231 (Dec. 1973).Google Scholar
  6. 6.
    E. L. Lawler,Combinatorial Optimization Theory (Holt, Rinehart, and Winston), to be published.Google Scholar
  7. 7.
    O. Ore,The Four Color Problem (Academic Press, New York, 1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Harold N. Gabow
    • 1
  1. 1.Department of Computer ScienceUniversity of ColoradoBoulder

Personalised recommendations