pure and applied geophysics

, Volume 141, Issue 2–4, pp 341–377 | Cite as

A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals

  • Hartmut A. Spetzler
  • Ganglin Chen
  • Scott Whitehead
  • Ivan C. Getting
Acoustic Studies of the Elasticity and Equation of State of Minerals


A new giga-Hertz ultrasonic interferometer has been developed, based on ultrasonic microscopy technology. The interferometer operates from 0.3 GHz to 1.5 GHz. The high frequency and associated small wavelengths together with the large bandwidth make it possible to measure travel times in samples with thicknesses of several microns and allow for unprecedented accuracy in bond corrections. An absolute accuracy of 1 part in 105 in travel time measurements is achievable in single crystals (thickness of ∼200 microns) or glasses of interest to the earth sciences. The high precision travel time data, combining with sample length measurements using a laser interferometer built in our laboratory, yield very high precision ultrasonic velocities.

The interferometer is intended for use in conjunction with a newly developed 4 GPa gas piston cylinder apparatus (Getting andSpetzler, 1993) for equation of state measurements under simultaneous pressure and temperature. A separate correction for the bond will be made for each datum at every point in temperature pressure space.

Key Words

GHz ultrasonic interferometry diffraction acoustic wave bond effect equation of state elastic constant acoustic velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaogi, M., Navrotsky, A., Yagi, T., andAkimoto, S.,Pyroxene-garnet transformation: Thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. InHigh-pressure Research in Mineral Physics, Geophys. Mono. 39 (eds. Manghnani, M. H., and Syono, Y.), (Terra Scientific Publishing Co., Tokyo 1987) pp. 251–260.Google Scholar
  2. Aki, K., andRichards, P. G.,Quantitative Seismology, Theory and Methods, Vol. 1 (W. H. Freeman and Company, New York 1980), pp. 167–185.Google Scholar
  3. Anderson, D. L., andBass, J. D. (1984),Mineralogy and Composition of the Upper Mantle, Geophys. Res. Lett.11, 637–640.Google Scholar
  4. Anderson, O. L., andSchreiber, E. (1965),The Pressure Derivatives of the Sound Velocities of Polycrystalline Magnesia, J. Geophys. Res.70, (20), 5,241–5,248.Google Scholar
  5. Anderson, O. L., Isaak, D. L., andOda, H. (1991),Thermoelastic Parameters for Six Minerals at High Temperature, J. Geophys. Res.96, (B10), 18,037–18,046.Google Scholar
  6. Bass, J. D. (1989),Elasticity of Grossular and Spessartite Garnets by Brillouin Spectroscopy, J. Geophys. Res.94, 7,621–7,628.Google Scholar
  7. Bassett, W. A., Shimizu, H., andBrody, E. M.,Pressure dependence of elastic moduli of forsterite by Brillouin scattering in diamond cell. InHigh-pressure Research in Geophysics (eds. Akimoto, S., and Manghnani, M. H.) (Center for Academic Publications, Tokyo 1982), pp. 115–124.Google Scholar
  8. Bowden, F. P., andTabor, D.,The Friction and Lubrication of Solids. Part I (Clarenden Press, Oxford 1950).Google Scholar
  9. Briggs, A.,Acoustic Microscopy (Clarenden Press, Oxford 1992).Google Scholar
  10. Challis, R. E. (1982),Diffraction Phenomena in the Field of a Circular Piezoelectric Transducer Viewed in the Time Domain, Ultrasonics20, 168–172.Google Scholar
  11. Challis, R. E., Cooker, R. P., Holmes, A. K., andAlper, T. (1992),Viscoelasticity of Thin Adhesive Layers as a Function of Cure and Service Temperature Measured by a Novel Technique, J. Appl. Polymer Sci.44, 65–81.Google Scholar
  12. Chen, G., Spetzler, H., Whitehead, S., andGetting, I. C. (1994),Characterizing sub-millimeter crystals with a wide-band GHz interferometer. In Proc.Ultrasonics International '93, in press.Google Scholar
  13. Chopelas, A., andNicol, M. F. (1982),Pressure Dependence to 100 Kbar of the Phonons of MgO at 90 and 295 K, J. Geophys. Res.87, 8,591–8,597.Google Scholar
  14. Davies, G. F., andO'Connell, R. J. (1977),Transducer and bond phase shifts in ultrasonics, and ther effects on measured pressure derivatives of elastic moduli. InHigh-pressure Research, Application in Geophysics (eds. Manghnani, M. H., and Akimoto, S.) (Academic Press, Inc. 1977) pp. 533–562.Google Scholar
  15. Duffy, T. S., andAnderson, D. L. (1989),Seismic Velocity in Mantle Minerals and the Mineralogy of the Upper Mantle, J. Geophys. Res.94 (B2), 1,895–1,912.Google Scholar
  16. Getting, I. C., andSpetzler, H. A. (1993),Gas-charged Piston-cylinder Apparatus for Pressures to 4 GPa, EOS, Trans. Geophys. Union74, (16), 163.Google Scholar
  17. Gwanmesia, G. D., Rigden, S., Jackson, I., andLiebermann, R. C. (1990),Pressure Dependence of Elastic Wave Velocity for β-Mg 2 SiO 4 and the Composition of the Earth's mantle, Sci.250, 794–797.Google Scholar
  18. Ita, J., andStixrure, L. (1992),Petrology, Elasticity, and Composition of the Mantle Transition Zone, J. Geophys. Res.97 (B5), 6,849–6,866.Google Scholar
  19. Jackson, I., Niesler, H., andWeidner, D. J. (1981),Explicit Correction of Ultrasonically Determined Elastic Wave Velocities for Transducer-bond Phase Shifts, J. Geophys. Res.86B, 3,736–3,748.Google Scholar
  20. Jackson, I., andNiesler, H.,The elasticity of periclase to 3 GPa and some geophysical implications. InHigh-pressure Research, Application in Geophysics (eds. Manghnani, M. H., and Akimoto, S.) (Academic Press Inc. 1982) pp. 93–113.Google Scholar
  21. Katahara, K. W., Rai, C. S., Manghnani, M. H., andBalogh, J. (1981),An Interferometric Technique for Measuring Velocity and Attenuation in Molten Rocks, J. Geophys. Res.86B, 11,779–11,786.Google Scholar
  22. Kino, G. S.,Acoustic Waves, Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Inc. 1987) pp. 164–175.Google Scholar
  23. Mao, H. K., Hemley, R. J., Fei, Y., Shu, J. F., Chen, L. C., andBassett, W. A. (1991),Effect of Pressure, Temperature, and Composition on Lattice Parameters and Density of (Fe, Mg)SiO 3-perovskites to 30 GPa, J. Geophys. Res.96, 8,069–8,079.Google Scholar
  24. McSkimin, H. J. (1950),Ultrasonic Measurement Techniques Applicable to Small Solid Specimens, J. Acoust. Soc. Am.22, 413–418.Google Scholar
  25. McSkimin, H. J. (1961),Pulse Superposition Method for Measuring ultrasonic Wave Velocities in Solids, J. Acoust. Soc. Am.33, 12–16.Google Scholar
  26. Meeker, T. R., andMeitzler, A. H.,Guided wave propagation in elongated cylinders and plates. InPhysical Acoustics, Vol. I (Part A) (ed. Mason, W. P.) (Academic Press Inc., New York 1964), pp. 111–167.Google Scholar
  27. Niesler, H.,Measurement of Elastic Wave Velocities on Jacketed Polycrystals at High Pressure, M.S. Thesis (Australian National University, 1986).Google Scholar
  28. Olijnyk, H., Paris, E., Geiger, C. A., andLager, G. A. (1991),Compressional Study of Katoite [Ca 3 Al 2(O 4 H 4)]and Grossular Garnet, J. Geophys. Res.96, (B9), 14,313–14,318.Google Scholar
  29. Pyrak-Nolte, L. J., Myer, L. R., andCook, N. G. W. (1990),Transmission of Seismic Waves across Single Natural Fractures, J. Geophys. Res.95B, 8,617–8,638.Google Scholar
  30. Schoenberg, M. (1980),Elastic Wave Behavior across Linear Slip Interfaces, J. Acoust. Soc. Am.68 (5), 1,516–1,521.Google Scholar
  31. Schreiber, E., andAnderson, O. L. (1966),Temperature Dependence of the Velocity Derivatives of Periclase, J. Geophys. Res.71 (12), 3,007–3,012.Google Scholar
  32. Smyth, J. R., andSwope, R. J. (1992),Crystal Chemistry of Mantle Eclogite Garnets, Geol. Soc. Am. 1992 Ann. Meeting, Abstracts with Programs24 (7), A129.Google Scholar
  33. Soga, N. E., Schreiber, E., andAnderson, O. L. (1966),Estimation of Bulk Modulus and Sound Velocities of Oxides at Very High Temperatures, J. Geophys. Res.71, 1,320–1,336.Google Scholar
  34. Spetzler, H. (1970),Equation of State of Polycrystalline and Single-crystal MgO to 8 Kilobars and 800 K, J. Geophys. Res.75, 2,073–2,087.Google Scholar
  35. Spetzler, H., Schreiber, E., andNewbigging, D. (1969a),Leak Detection in High Pressure Gas System, Rev. Sci. Instr.40, 179.Google Scholar
  36. Spetzler, H., Schreiber, E., andNewbigging, D. (1969b),Coupling of Ultrasonic Energy through Lapped Surfaces at High Temperature and Pressure, J. Acoust. Soc. Am.45, 1057.Google Scholar
  37. Spetzler, H., Schreiber, E., andPeselnick, L. (1969c),Coupling of Ultrasonic Energy through Lapped Surfaces: Application to High Temperatures, J. Acoust. Soc. Am.45, 520.Google Scholar
  38. Spetzler, H., Schreiber, E., andO'Connell, R. (1972),Effect of Stress-induced Anisotropy and Porosity on Elastic Properties of Polycrystals, J. Geophys. Res.77, 4938–4944.Google Scholar
  39. Spetzler, H. A., andYoneda, A. (1993),Performance of the Complete Travel-time Equation of State at Simultaneous High Pressure and Temperature, Pure and Appl. Geophys., this issue.Google Scholar
  40. Vincent, A. (1987),Influence of Wearplate and Coupling Layer Thickness on Ultrasonic Velocity Measurement, Ultrasonics25, 237–243.Google Scholar
  41. Wang, Y., Weidner, D. J., Liebermann, R. C., Liu, X., Ko, J., Vaughan, M. T., Zhao, Y., Yeganen-Haeri, A. andPacalo, R. E. G. (1991),Phase Transition and Thermal Expansion of MgSiO 3 Perovskite, Science251, 410–413.Google Scholar
  42. Weidner, D. J., andIto, E.,Mineral physics constraints on a uniform mantle composition. InHigh-pressure Research in Mineral Physics, Geophys. Mono. 39 (eds., Manghnani, M. H., and Syono, Y.) (Terra Scientific Publishing Co., Tokyo 1987) pp. 439–446.Google Scholar
  43. Weidner, D. J., Swyler, K., andCarleton, H. R. (1975),Elasticity of Microcrystals, Geophys. Res. Lett.2, 189–192.Google Scholar
  44. Whitehead, S. M.,Microwave Ultrasonic Travel-time Measurements on an Olivine Series, M.S. Thesis (University of Colorado at Boulder, 1993).Google Scholar
  45. Winkler, K. W., andPlona, T. J. (1982),Technique for Measuring Ultrasonic Velocity and Attenuation Spectra in Rocks under Pressure, J. Geophys. Res.87 (B13), 10,776–10,780.Google Scholar
  46. Yoneda, A. (1990),Pressure Derivatives of Elastic Constants of Single Crystal MgO and MgAl 2 O 4, J. Phys. Earth38, 19–55.Google Scholar
  47. Yoneda, A., Spetzler, H., andGetting, I. (1994),Implication of the complete travel time equation of state for a new pressure scale, InHigh-pressure Science and Technology (eds. Schmidt, S. C., Shaner, J. W., Samara, G. A., and Ross, M. (American Institute of Physics, Woodbury, New York 1993) pp. 1609.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Hartmut A. Spetzler
    • 1
  • Ganglin Chen
    • 1
  • Scott Whitehead
    • 1
  • Ivan C. Getting
    • 1
  1. 1.CIRES and Department of Geological SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations