A class of functions synthesized from a finite number of examples and a lisp program scheme

  • Yves Kodratoff


We define a class of functions that can be synthesized from example problems. The algorithmic representation of these functions is the interpretation of a given scheme. The instantiation of the scheme variables is realized by a new method which uses pattern matching then if necessary generalization and further pattern matching. One can compute the number of examples necessary to characterize in a unique way a function of this class.

Key words

Difference equation fixed point semantics generalization instantiation (giving a particular value to the variables of a program scheme) Lisp programs pattern matching program proof program synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Biermann, “The inference of regular lisp programs from examples,”IEEE Trans. Syst. Man Cybern. 8:585–600 (1978); A. W. Biermann and D. R. Smith, “The hierarchical synthesis of lisp scanning programs,” in B. Gilchrist, ed.,Information Processing 77 (North Holland, Amsterdam, 1977), pp. 41–45.Google Scholar
  2. 2.
    R. S. Boyer and H. S. Moore, “Proving theorems about lisp functions,”JACM 22:129–144 (1975).Google Scholar
  3. 3.
    B. Courcelle, G. Cousineau, and M. Nivat,The Theory of Program Schemes (North Holland, to be published).Google Scholar
  4. 4.
    D. P. Friedmann and D. S. Wise, “CONS Should Not Evaluate Its Arguments,” in S. Michaelson and R. Milner, eds.,Automata, Languages and Programming, (Edinburgh University Press, 1976), pp. 257–281.Google Scholar
  5. 5.
    A. Grzegorczyk, “Some classes of recursive functions,“Rozpr. Math. (1953), pp. 3–45.Google Scholar
  6. 6.
    C. C. Green, R. J. Waldinger, D. R. Barstow, R. Elschlager, D. B. Lenat, B. P. McCune, D. E. Shaw, and L. I. Steinberg, “Progress Report on Program-Understanding Systems,” MEMO AIM-240, Stanford Artificial Intelligence Laboratory, Stanford, California (1974).Google Scholar
  7. 7.
    S. Hardy, “Synthesis of lisp Functions from Examples,”Fourth International Joint Conference on Artificial Intelligence: Advance Papers (1975), pp. 268–273.Google Scholar
  8. 8.
    G. Huet, “Résolution d'équations dans les langages d'ordre 1, 2,..., ω,” Thesis, Université Paris VII, Paris (1976).Google Scholar
  9. 9.
    J. P. Jouannaud and G. Guiho, “Inference of functions with an interactive system,”Mach. Intell. 9, in press.Google Scholar
  10. 10.
    Z. Manna,Mathematical Theory of Computation (McGraw-Hill, New York, 1974).Google Scholar
  11. 11.
    Z. Manna, S. Ness, and J. Vuillemin, “Inductive methods for proving properties of programs,”Commun. ACM 16:491–502 (1973).Google Scholar
  12. 12.
    J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. E. Levin,Lisp 1.5 Programmer's Manual (M.I.T. Press, Cambridge, Massachusetts, 1962).Google Scholar
  13. 13.
    G. D. Plotkin, “Automatic Methods of Inductive Inference,” Ph.D. thesis, University of Edinburgh, Edinburgh (1971).Google Scholar
  14. 14.
    D. Shaw, W. Swartout, and C. Green, “Infering lisp Programs from Example Problems,”Fourth International Joint Conference on Artificial Intelligence, Advance Papers (1975), pp. 268–273.Google Scholar
  15. 15.
    L. Siklossy and D. A. Sykes, “Automatic Program Synthesis from Example Problems,”Fourth International Joint Conference on Artificial Intelligence, Advance Papers (1975), pp. 268–273.Google Scholar
  16. 16.
    L. Siklossy, “The Synthesis of Programs from Their Properties, and the Insane Heuristic,”Proceedings of the Third Texas Conference on Computer Systems, Austin, Texas (1974).Google Scholar
  17. 17.
    P. D. Summers, “Program Construction from Examples,” Ph.D. thesis, Yale University, New Haven, Connecticut (1975).Google Scholar
  18. 18.
    P. D. Summers, “A methodology for lisp program construction from examples,”JACM 24:161–175 (1977).Google Scholar
  19. 19.
    P. H. Winston, “Learning Structural Description from Examples,” Memo AI TR-231, M.I.T. Artificial Intelligence Laboratory, Cambridge, Massachusetts (1970).Google Scholar
  20. 20.
    B. Wegbreit, “Goal directed program transformation,”IEEE Trans, on Software Engineering 2:69–80 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Yves Kodratoff
    • 1
  1. 1.GR 22 du CNRS Institut de ProgrammationParisFrance

Personalised recommendations