, Volume 88, Issue 3, pp 189–246 | Cite as

The ultrastructure of the marine gastrotrichTurbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetical importance

  • Gertraud Teuchert


The organization of marine gastrotrichs (Macrodasyoidea) is reviewed by ultrastructural analysis of one representative,Turbanella cornuta Remane, and the fine structure of tissues and cells is described.

Turbanella cornuta has a mono-layeredcellular epidermis rich withsensory hairs, epidermal bodies, isolatedepidermal glands, glandular adhesive organs belonging to a duo-gland type, andventral ciliated epidermal cells of the multiciliated type. The voluminous neuropil of thebrain consists of a circular commissure which sends out four anterior and posterior longitudinal headnerves. The posterior ones unite on each side to one single longitudinal nerve of the periphery which is occupied with single peripheral neurons and has thin commissures that make it anorthogon. The position and the structure of the neurons indicate their sensitive, associative, motoric, and neurosecretory functions. The different forms of synapses give first hints to neuronal connections within gastrotrichs. There is a big cellularglia around the brain commissure and a small cellular glia within the brain neurons. In between the cross-striated muscle fibrils of thepharyngeal wall there are also nerves and sensory hairs.

TheY-organ lies in the interior of the lateral body cavities, which are delimited by an outer musculature of the body wall and an inner musculature of the intestinal tract. In the pharyngeal region, theY-organ fills the body cavities completely and, in the intestinal region, it covers thegonads, which also lie in the lateral body cavities, dorsally. The testicles lie separately in front of the paired ovaries. Single states of oogenesis could be identified as oogonia, and young and old oocytes. There is a paired gland organ in front of the dorsomedian ovary which may produce a mucous cover for the egg.

Theintestinal tract is adapted to mechanical stress by a myoepithelium in the pharyngeal region, by various interdigitations, and by narrow intercellular gaps with hemidesmosomal adhesions to the basement membrane. The majority of the resorbing intestinal cells have a high seam of microvilli and contain various numbers of lysosomes. In addition, there are some secerning cells without microvilli, but with a centrically arranged ER and with big secretion granules in the dorsomedian sector.

The ultrastructure affirms a close correlation between the conditions of life in the interstitium and structural adaptations, such as may be observed in single structures of the body wall, the y-organ, the intestinal tract and, in some respect, even in the nervous system and in the formerly researched musculature and spermatohistogenesis. On the other hand, for the construction of the glandular adhesive organs, the nervous system, and the formerly investigated body cavities, a phylogenetical relevance is discussed. Thereafter, gastrotrichs have more primitive characters than the closely related nematodes.



sensory hair cells




outleading tube


basement membrane


basal body




rootlet of the cilium




cell wall


d-cells of the brain




e-cells of the brain


epidermal bodies


ripe egg in the dorsomedian ovary




endoplasmatic reticulum


ventral ciliated epidermal cells


f-cells of the brain


fibrillar structure


gland cell


germ epithelium


small and big cellular glia of the br




genital pore


h-cells of the brain


lateral adhesive tubules


posterior adhesive tubules




intestinal lumen


lumen of the organ


lipid granules






multivesicular body


circular musculature




longitudinal musculature


mouth opening




longitudinal muscle fibers of the pharyngeal wall


radial muscle fibers of the pharyngeal wall




brain neurons


brain commissure


nerve fibers


lateral headnerve


nuclear membrane




ventrolateral headnerve


peripheric neuron


peripheric nerve commissure


longitudinal peripheric nerve


lateral ovary






wall cells of the ovary


secretory pore




palpar organ


pharyngeal bulbs


pharyngeal lumen


nerve plexus of the pharynx wall


anterior sense organ


secretory granules


sensory hair cell


posterior sense organ


supporting stick


supporting cell


synaptic vesicles


synaptic gap




testicular lumen


wall cells of the testicles and the vas deferens






vas deferens






anterior commissure of the y-organ


yolk granules


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, J.E.: The organization of the cerebral ganglion in the shore crab,Carcinus meanas. I. Morphology. Z. Zellforsch.120, 386–400 (1971)Google Scholar
  2. Ax, P.: Das Hautgei\elepithel der Gnathostomulida. Verh. Dt. Zool. Ges. München1963, 452–461 (1964)Google Scholar
  3. Ax, P.: Die Bedeutung der interstitiellen Sandfauna für allgemeine Probleme der Systematik. ökologie und Biologie. Veröffentl. Inst. Meeresf. Bremerhaven2, 15–66 (1966)Google Scholar
  4. Ax, P.: Populationsdynamik, Lebenszyklen und Fortpflanzungsbiologie der Mikrofauna des Meeressandes. Verh. Dt. Zool. Ges. Innsbruck1968, 66–113 (1969)Google Scholar
  5. Beklemischew, W.N.: Grundlagen der vergleichenden Anatomie der Wirbellosen1, 1–441 (1958)Google Scholar
  6. Bird, A.F.: The structure of Nematodes, pp. 310. New York-London: Academic Press 1971Google Scholar
  7. Bonner, Th.P., Weinstein, P.P.: Ultrastructure of cuticle formation in the nematodesNippostrongylus brasiliensis andNematospiroides dubius. J. Ultrastruct. Res.40, 261–271 (1972)Google Scholar
  8. Brodie, A.E.: Development of the cuticle in the rotiferAsplanchna brightwelli. Z. Zellforsch.105, 515–525 (1970)Google Scholar
  9. Bullock, Th.H.: Comparisons between vertebrates and invertebrates in nervous organization. In: The neurosciences, Vol. 3, pp. 343–346. New York: Rockefeller University Press 1974Google Scholar
  10. Bullock, Th.H., Horridge, G.A.: Structure and function in the nervous systems of invertebrates, Vol. 1, pp. 798. San Francisco: Freeman 1965Google Scholar
  11. Cohen, M.J.: A comparison of invertebrate and vertebrate central neurons. In: The neurosciences, Vol. 2, pp. 789–812. New York: Rockefeller University PressGoogle Scholar
  12. Debell, J.T.: A long look at neuromuscular junctions in nematodes. Quart. Ref. Biol.40, 233–251 (1965)Google Scholar
  13. de Duve C.: The lysosome concept. Ciba foundation symposium on lysosomes (A. N.S. de Rench, P.P. Cameron, eds.), pp. 1–31. Boston: Little Brown 1963Google Scholar
  14. Ernst, W., Goerke, H.: Aufnahme und Umwandlung gelöster Glucose-14C durchLanice conchilega (Polychaeta, Terebellidae). Veröffentl. Inst. Meeresf. Bremerhaven11, 313–326 (1969)Google Scholar
  15. Gersch, M.: Wesen und Wirkungsweise von Neurohormonen im Tierreich. Naturwissenschaften44, 525–532 (1957)Google Scholar
  16. Gersch, M., Scheffel, H.: Sekretorisch tÄtige Zellen im Nervensystem vonAscaris. Naturwissenschaften45, 345–346 (1958)Google Scholar
  17. Golding, D.W.: The diversity of secretory neurons in the brain ofNereis. Z. Zellforsch.82, 321–344 (1967)Google Scholar
  18. Graebner, J.: Zur histologischen Feinstruktur der Sinnesborsten bei Gastrotrichen:Macrodasys caudatus. Naturwissenschaften53, Hf. 17, 440 (1966)Google Scholar
  19. Güldner, F.-H.: Elektronenmikroskopische Untersuchungen am Intestinaltrakt vonDaphnia pulex. Diss., Berlin, pp. 31 (1969)Google Scholar
  20. Hagedorn, I.R., Bern, H.A., Nishioka, R.S.: The fine structure of the supraoesophageal ganglion of the rhynchobdellid leech,Theromyzon rude, with special reference to neurosecretion. Z. Zellforsch.58, 714–758 (1963)Google Scholar
  21. Hanström, B.: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere, unter Berücksichtigung seiner Funktion, 628 S. Amsterdam: 1968Google Scholar
  22. d'Hondt, J.L.: Gastrotricha. In: Oceanogr. Mar. (H. Barnes, ed.). Biol. Ann. Rev.9, 141–192 (1971)Google Scholar
  23. Hummon, W.D.: Distributional ecology of marine interstitial Gastrotricha from Woods Hole, Massachusetts, with taxonomic comments on previously described species. PhD. Thesis, University of Massachusetts, pp. 117 (1969)Google Scholar
  24. Hummon, W.D.: Dispersion of Gastrotricha in a marine beach of the San Juan Archipelago. Washington, Mar. Biol.16, 349–355 (1972)Google Scholar
  25. Hummon, W.D.: Gastrotricha from Beaufort, North Carolina, USA. Cah. Biol. Mar.15, 431–446 (1974a)Google Scholar
  26. Hummon, W.D.: Some taxonomic revisions and nomenclatural notes concerning marine and brackish-water Gastrotricha. Trans-Am. Microsc. Soc.93, 194–205 (1974b)Google Scholar
  27. Hummon, W.D.: Gastrotricha. In: Reproduction of Marine invertebrates, (A.C. Giese, J.S. Pearse, eds.), Vol. 1, pp. 485–506. New York: Academic Press 1974 cGoogle Scholar
  28. Hyman, L.: The invertebrates. Vol. II: Plathelminthes and Rhynchocoela — the Acoelomate Bilateria. Vol. III: Acanthocephala, Aschelminthes and Entoprocta — the Pseudocoelomate Bilateria. New York-Toronto-London: McGraw-Hill 1951Google Scholar
  29. Hyman, L.: The invertebrates. Vol. V: Smaller Coelomate groups. New York-Toronto-London: McGraw-Hill 1959Google Scholar
  30. Koehler, J.K.: A fine structure study of the rotifer integument. J. Ultrastruct. Res.12, 113–134 (1966)Google Scholar
  31. Krall, J.F.: The cuticle and epidermal cells ofDero obtuse (family Naididae). J. Ultrastruct. Res.25, 84–93 (1968)Google Scholar
  32. Lyons, K.M.: The fine structure and function of the adult epidermis of two skin parasitic monogeneans,Entobdella soleae andAcanthocotyle elegans. Parasitology60, 39–52 (1970)Google Scholar
  33. Malakhov, W.W., Tscherdanzjew, W.G.: Embryonalentwicklung des freilebenden marinen NematodenPontonema vulgare (Russ., Akad. in Nauk, USSR). Zool. J.54, 165–174 (1975)Google Scholar
  34. Michel, C.: Ultrastructure et histochemie de la cuticle pharyngienne chezEulalia viridis Müller (Annélide Polychaète Errante, Phyllodocidae). Z. Zellforsch.98, 54–73 (1969)Google Scholar
  35. Novikoff, A.B., Holtzman, E.: Zellen und Organellen, 280 S. München-Bern-Wien: BLV Verlagsgesellschaft 1973Google Scholar
  36. Orrhage, L.: über die Anatomie, Histologie und Verwandtschaft der Apistobranchidae (Polychaeta, Sedentaria) nebst Bemerkungen über die systematische Stellung der Archianneliden. Z. Morph. Tiere79, 1–45 (1974)Google Scholar
  37. Peters, A.: Plasmamembrane contacts in the central nervous system, J. Anat. (London)96, 237–248 (1962)Google Scholar
  38. Pintner, T.: Bruchstücke zur Kenntnis der Rüsselband-Würmer. Zool. Jb. (Anat.)58, 1–20 (1938)Google Scholar
  39. Rajan, K.C.: Studies on the intestinal fauna of the South West coast of India. Ph. D. thesis, Beaufort, North Carolina (1972)Google Scholar
  40. Reisinger, E.: Ultrastrukturforschung und Evolution. Ber. Phys. Med. Ges., Würzburg, N.F.77, 1–43 (1969)Google Scholar
  41. Reisinger, E.: Zur Problematik der Evolution der Coelomaten. Z. Zool. Syst. u. Evol.8, 81–109 (1970)Google Scholar
  42. Reisinger, E.: Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Z. Zool. Syst. u. Evol.10, 1–43 (1972)Google Scholar
  43. Reisinger, E., Kelbetz, S.: Feinbau und Entladungsmechanismus der Rhabditen. Z. Wiss. Mikrosk.65, 472–508 (1964)Google Scholar
  44. Remane, A.: Morphologie und Verwandtschaftsbeziehungen der aberranten Gastrotrichen. Z. Morph. ökol. Tiere5, 625–754 (1926)Google Scholar
  45. Remane, A.: Gastrotricha und Kinorhyncha. Dr. H.G. Bronn's Klassen und Ordnungen des Tierreichs (Vermes),4, 1–242 (1936)Google Scholar
  46. Remane, A.: Zur Verwandtschaft und Ableitung der niederen Metazoen. Verh. Dt. Zool. Ges. Graz 1957,21, 179–196 (1958)Google Scholar
  47. Remane, A.: The systematic position and phylogeny of the pseudocoelomates. In: The lower metazoa (E.C. Dougharty, Z.N. Brown, E.D. Hanson, W.D. Hartmann, eds.), pp. 247–255. University of California Press 1963Google Scholar
  48. Remane, A.: Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik (Nachdruck), 364 S. Koenigstein/Taunus: Koeltz 1971Google Scholar
  49. Remane, A., Storch, V., Welsch, U.: Kurzes Lehrbuch der Zoologie, 459 S. Stuttgart: Fischer 1972Google Scholar
  50. Rieger, R.M.: Monociliated epidermal cells in Gastrotricha: Significance for concepts of early metazoon evolution. Z. Zool. Syst. Evolut.-forsch.14, 198–226 (1976a)Google Scholar
  51. Rieger, R.M., Rieger, G.E.: Fine structure of the Archiannelid cuticle and remarks on the evolution of the cuticle within the spiralia. Acta Zool. (Stockh.)57, 53–68 (1976b)Google Scholar
  52. Rieger, R.M., Ruppert, E., Rieger, E.G., Schoepfer-Sterrer, Ch.: On the fine structure of Gastrotrichs with description ofChordodasys antennatus sp. n. Zool. Scripta3 219–237(1974)Google Scholar
  53. Roggen, D.R., Raski, D.J., Jones, N.O.: Further electron microscopic observations ofXiphinema index. Nematologica13, 1–16 (1967)Google Scholar
  54. Rosenbluth, J.: Ultrastructure of somatic muscle cells inAscaris lumbricoides. II. Intermuscular junctions, neuromuscular junctions and glycogenstores. J. Cell Biol.26, 379–591 (1965)Google Scholar
  55. Schmidt, P.: Interstitielle Fauna von Galapagos IV. Gastrotricha. Mikrofauna Meeresboden26, 1–76 (1974)Google Scholar
  56. Schmidt, P., Teuchert, G.: Quantitative Untersuchungen zur ökologie der Gastrotrichen im Gezeiten-Sandstrand der Insel Sylt. Mar. Biol.4, 4–23 (1969)Google Scholar
  57. Schrom, H.: Verteilung einiger Gastrotrichen im oberen Eulitoral eines nordadriatischen Sandstrandes. Veröff. Inst. Meeresforsch. Bremern.2, 95–103 (1966)Google Scholar
  58. Siewing, R.: Diskussionsbeitrag zur Phylogenie der Coelomaten. Zool. Anz.179, 131–175 (1967)Google Scholar
  59. Steinböck, O.: Zur Phylogenie der Gastrotrichen. Verh. Dt. Zool. Ges. Graz 1957,21, 128–169 (1958)Google Scholar
  60. Storch, V., Riemann, F.: Zur Ultrastruktur der Seitenorgane (Amphiden des limnischen NematodenTobrius aberrans). Z. Morph. Tiere74, 163–170 (1973)Google Scholar
  61. Storch, V., Welsch, U.: über den Aufbau resorbierender Epithelien darmloser Endoparasiten. Zool. Anz. Suppl.33, 521–617 (1970a)Google Scholar
  62. Storch, V., Welsch, U.: über die Feinstruktur der Polychaeten-Epidermis (Annelida). Z. Morph. Tiere66, 310–322 (1970b)Google Scholar
  63. Teuchert, G.: Zur Fortpflanzung und Entwicklung der Macrodasyoidea (Gastrotricha). Z. Morph. Tiere63, 343–418 (1968)Google Scholar
  64. Teuchert, G.: Die Feinstruktur des Protonephridialsystems vonTurbanella comuta Remane, einem marinen Gastrotrich der Ordnung Macrodasyoidea. Z. Zellforsch.136, 277–289 (1972)Google Scholar
  65. Teuchert, G.: Aufbau und Feinstruktur der Muskelsysteme vonTurbanella comuta Remane (Gastrotricha, Macrodasyoidea). Mikrofauna Meeresboden39, 1–26 (1974)Google Scholar
  66. Teuchert, G.: Organisation und Fortpflanzung vonTurbanella comuta (Gastrotricha). I.W.F.C 1176, pp. 16 (1975a)Google Scholar
  67. Teuchert, G.: Anpassungsformen von marinen Gastrotrichen (Macrodasyoidea) an das Sandlückensystem. I.W.F.C. 1177, pp. 16 (1975b)Google Scholar
  68. Teuchert, G.: Differenzierung von Spermien bei dem marinen GastrotrichTurbanella comuta Remane (Macrodasyoidea). Verh. Anat. Ges.69, 743–748 (1975c)Google Scholar
  69. Teuchert, G.: Elektronenmikroskopische Untersuchungen über die Spermatogenese und Spermatohistogenese vonTurbanella cornuta Remane (Gastrotricha). J. Ultrastruct. Res.56, 1–14 (1976a)Google Scholar
  70. Teuchert, G.: Sinneseinrichtungen beiTurbanella comuta Remane (Gastrotricha). Zoomorph.83, 193–207 (1976b)Google Scholar
  71. Teuchert, G.: Strukturanalyse von Bewegungsformen bei Gastrotrichen. In pressGoogle Scholar
  72. Teuchert, G.: LeibeshöhlenverhÄltnisse von dem marinen GastrotrichTurbanella comuta Remane (Ordnung Macrodasyoidea) und eine phylogenetische Bewertung. Zool. Jahrb.97, 586–596 (1977)Google Scholar
  73. Thane-Fenchel, A.: Interstitial gastrotrichs in some south florida beaches. Ophelia7, 113–138 (1970)Google Scholar
  74. Tombes, A.S.: An introduction to invertebrate endocrinology, pp. 217. New York: Academic Press 1970Google Scholar
  75. Tyler, S.: Comparative ultrastructure of adhesive systems in the Turbellaria and other interstitial animals. Ph. D. thesis, University of North Carolina at Chapel Hill (1975)Google Scholar
  76. Tyler, S.: Comparative ultrastructure of adhesive systems in the Turbellaria. Zoomorph.84, 1–76 (1976)Google Scholar
  77. Ulrich, W.: Die Geschichte des Archicoelomatenbegriffes. Z. Zool. Syst. Evol.10, 302–320 (1972)Google Scholar
  78. Walz, B.: Zur Feinstruktur der Muskelzellen des Pharynx-Bulbus von Tardigraden. Z. Zellforsch.140, 389–399 (1973)Google Scholar
  79. Ward, S.: Chemotaxis by the nemato deCaenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants. Proc. Nat. Acad. Sci USA70, 817–821 (1973)Google Scholar
  80. Ward, S., Thomson, N., White, J.G., Brenner, S.: Electron microscopical reconstruction of the anterior sensory anatomy of the nematode (Caenorhabditis elegans). J. Comp. Neur.160, 313–338 (1975)Google Scholar
  81. Watson, B.D.: The fine structure of the body-wall and the growth of the cuticle in the adult nematodeAscaris-lumbricoides. Quart. J. Micr. Sci.106, 83–91 (1965)Google Scholar
  82. Welsch, U., Storch, V.: Einführung in Cytologie und Histologie der Tiere, 243 S. Stuttgart: Fischer 1973Google Scholar
  83. Westfall, J.A.: Ultrastructure of synapses in a primitive coelenterate. J. Ultrastruct. Res.32, 237–246 (1970)Google Scholar
  84. Wilke, U.: Mediterrane Gastrotrichen. Zool. Jb. (Syst. ökol. Geogr. Tiere)82, 497–550 (1954)Google Scholar
  85. Wirth, U.: Spermatogenesis and sperm ultrastructure in some oxyuroid nematodes. Third International Congress of Parasitology, Proc.1, 441–442 (1975)Google Scholar
  86. Yuen, P.H.: Electron microscopical studies on the anterior end ofPanagrellus silusiae (Rhabditidae). Nematologica14, 554–564 (1968)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Gertraud Teuchert
    • 1
  1. 1.Institut für Anatomie der UniversitÄtRegensburgFederal Republic of Germany

Personalised recommendations