, Volume 83, Issue 1, pp 1–47 | Cite as

Morphogenesis, pattern formation and function of the dentition ofHeterodontus (Selachii)

  • Wolf -Ernst Reif


As in all skarks, the ectoderm ofHeterodontus folds in behind the jaw cartilage during embryogenesis. The anterior part of this ectodermal fold becomes organized into the Inner Enamel Epithelium which cooperates with the mesenchyme. Already during the infolding, both tissues begin to form teeth. This process begins with a spontaneous division of the fold along its long axis into tooth-forming and non tooth-forming tissue sections. In this way the tooth formula of the “first dentition” is established. The Inner Enamel Epithelium and the mesenchyme only gradually attain competence for tooth formation, so that the first formed tooth germs become incomplete tooth shards (Fig. 8). Shortly before the end of the embryonic phase, as soon as the infolding stops, the tooth transport mechanism begins to work.Heterodontus hatches with a characteristic “first dentition”, which has a typical dental formula of 17to19/13to15.

Because of allometric growth, the number of tooth families increases strongly in the course of a lifetime, but to different degrees in the various species. The “first dentition” is composed of teeth having numerous needle-like cusps; it is only slightly heterodont and serves in feeding on soft-bodied benthonic animals. In the course of ontogeny, a highly heterodont dentition becomes differentiated. The anterior part of the adult dentition is composed of teeth with 1–3 cusps, while the distal part bears molariform teeth. On the basis of these distal teeth, two groups of species may be distinguished: a primitive group (Francisci-type) distributed in the Indopacific and having slender, keeled crushing teeth (probably specialized for a diet of echinoderms), and a group of species derived from it (Portusjacksoni-type) found only in the western Pacific and having broad, powerful crushing teeth capable of cracking hardshelled molluscs.

It is characteristic that the most distal tooth family of the first dentition becomes the main crushing tooth within the molariform group in the course of ontogeny. This tooth family lies at the point where the most force can be brought to bear by the jaw apparatus, and remains there life-long; that is, it does not change position relative to the jaw.

Since the infolded ectoderm lies on the inner side of the jaw, its growth is controlled by the growth of the jaw. The jaw on the Portusjacksoni-type grows forward sharply to form a beak so that the infolded ectoderm must grow forward with it and thus can form extra tooth families. The infolded ectoderm expands outwards in the course of ontogeny toward the distal ends of the rami. As soon as a gap appears between tooth primordia in this fold, it is filled by a new tooth germ whether the gap results from forward migration of an already-formed tooth or from elongation of the folded ectoderm during growth.

In theHeterodontus dentition there are two tooth-form gradients: On one hand, tooth-form in each family changes in the course of time; on the other, the dentition is heterodont at each ontogenetic stage. Thus, within each dentition there is a tooth form and tooth size gradient. Tooth form and size, therefore, are determined by two coordinate parameters:
  1. 1.

    the age of the animal and

  2. 2.

    the position in the dentition.


The observations on the dentition ofHeterodontus lead to the interpretation that the insertion of new teeth and tooth families, as well as their form and size, is regulated by a complex system of reference points which transmit positional information to the tooth-forming cells.


Tooth Germ Tooth Size Allometric Growth Tooth Form Dental Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Applegate, Sh.P.: Tooth terminology and variation in sharks with special reference to the sand shark,Carcharias taunts Rafinesque. Contr. Sci.86, 2–18, (1965)Google Scholar
  2. Beaumont, G. de: Recherches sur la denture et la cavité orale d'Alopiasvulpinus Bonat. (Selachii). Rev. suisse Zool.66, 387–410 (1959)Google Scholar
  3. Casier, E.M.:Constitution et évolution de la racine dentaire des Euselachii. Bull. Mus. Hist, nat, Belg.23 13, 1–15;23 (14), 1–32;23 (15), 1–45 (1947)Google Scholar
  4. Casier, E.M.: Transformation des systèmes de fixation et de vasculatisation dentaires dans l'évolution des selaciens du sou ordre des squaliformes. Mem. Inst. r. Sci. nat. Belg.65, 1–60 (1961)Google Scholar
  5. Compagno, L.J.V.: Systematics of the genusHemitriakis (Selachii, Carcharinidae) and related genera. Proc. Calif, Acad. Sci., 4. ser.38, 63–98 (1970)Google Scholar
  6. Compagno, L.J.V.: Interrelationships of living elasmobranchs. In: Interrelationships of fishes, P.H. Greenwood, R.S. Miles, C. Patterson, eds. Zool. J. Linn. Soc.53, Suppl. 1, 15–61 (1973)Google Scholar
  7. Dempster, R.P., Herald, E.S.: Notes on the hornshark,Heterodontus francisci, with observations on mating activities. Occ.Pap. Calif. Acad. Sci.33, 1–7 (1961)Google Scholar
  8. Denision, R.H.: The structure and evolution of teeth in lungfishes. Fieldiana Geol.33, 31–58 (1974)Google Scholar
  9. Edmund, A.G.: Tooth repkcement phenomena in the lower vertebrates. Roy. Ont. Mus. Life Sci. Dic., Contr.52, 1–190 (1960)Google Scholar
  10. Feduccia, A., Slaughter, B.H.: Sexual dimorphism in Skates (Rajidae) and its possible role in differential niche utilization. Evolution28, 164–168 (1974)Google Scholar
  11. Garman, S.: The Plagiostomia (Sharks, Skates, and Rays). Mem. Mus. Comp. Zool.36, 1–528 (1913)Google Scholar
  12. Gudger, E.W.: Abnormal dentitions in sharks, Selachii. Bull. amer. Mus. nat. Hist.73, 249–280 (1937)Google Scholar
  13. Hertwig, O.: Über Bau und Entwicklung der Placoidschuppen und der Zähne der Selachier. Jena. Z. Med. Naturw.8, (1974)Google Scholar
  14. Hildebrand, M.: Analysis of vertebrate structure. New York-London-Sydney-Toronto: Wiley 1974Google Scholar
  15. Jacobi, K.: Kiefergebiß und Zähne der Rochen und Haie. Marburg/Lahn: Elwert 1939Google Scholar
  16. Kuhn, E.: Über Acrodus-Funde aus dem Grenzbitumenhorizont der anisischen Stufe der Trias des Monte San Giorgio (Kt. Tessin). Ecologae geol. Helv.38, 662–673 (1945)Google Scholar
  17. Laaser, P.: Die Entwicklung der Zahnleiste bei den Selachiern. Anat. Anz.17, 479–489 (1900)Google Scholar
  18. Laaser, P.: Die Zahnleiste und die ersten Zahnanl gen der Selachier. Jena. Z. Med. Naturwiss.37, 551–570 (1903)Google Scholar
  19. Landolt, H.H.: Über den Zahnwechsel bei Selachiern. Rev. suisse Zool.54, 305–367 (1947)Google Scholar
  20. De Mar, R.: Evolutionary implications of Zahnreihen, Evolution26, 435–450 (1972)Google Scholar
  21. Marquard, E.: Beiträge zur Kenntnis des Selachiergebisses. Rev. suisse Zool.53, 73–132 (1946)Google Scholar
  22. McEachran, J.D., Musick, J.A.: Characters for distinguishing between immature specimens of the sibEng species,Raja erinacea and Raja ocellata (Pisces: Rajidae). Copeia1973, 238–250 (1973)Google Scholar
  23. McLaughlin, R.H.: The ecology of heterodont sharks. Ph.D.-Thesis, University of Sydney, N. S. W. (1969)Google Scholar
  24. McLaughlin, R.H., O'Gower, A.K.: Underwater tagging of the Port-Jackson shark,Heterodontus portusjacksoni (Meyer). Bull. Jnst. Oceanogr.69 1410, 3–11 (1970)Google Scholar
  25. McLaughlin, R.H., O'Gower, A.K.: Life history and underwater studies of a heterodont shark. Ecol. Monogr.41, 289–341 (1971)Google Scholar
  26. Miles, A.E.W., Gaunt, W.A.: Fundamental aspects of tooth morphogenesis. In: Structural and chemical organization of teeth, A. E. W. Miles, ed., Vol. I, pp. 151–197. New York: Academic Press 1967)Google Scholar
  27. Moss, S.A.: Tooth replacement in the lemon shark,Negaprion brevirostris. In: Sharks, skates, and rays, P.E. Gilbert, ed., pp. 319–329, Baltimore, Maryland: John Hopkins Press (1967)Google Scholar
  28. Nelson, D.R., Johnson, R.H.: Diel activity rhythms in the nocturnal, bottom-dwelling sharks,Heterodontus francisci andCephaloscyllium ventriosum, Copeia1970, 732–739 (1970)Google Scholar
  29. Nobiling, G.: Die Biomechanik des Kieferapparates beim Stierkopfhai (Heterodontus portusjacksoni=Heterodontus philippt). Dissertation, Universität Tübingen (1974)Google Scholar
  30. Ørvig, T.: Acanthodian dentition and its bearing on the relationships of the group. Palaeontographica A143, 119–150 (1973)Google Scholar
  31. Osborn, J.W.: New approach to Zahnreihen. Nature225, 343–346 (1970)Google Scholar
  32. Osborn, J.W.: The evolution of dentitions. Amer. Scientist61, 548–559 (1973a)Google Scholar
  33. Osborn, J.W.: On the biological improbability of Zahnreihen as embryological units. Evolution26, 601–607 (1973b)Google Scholar
  34. Osborn, J.W.: On the control of tooth replacement in reptiles and its relationship to growth. J.theor.Biol.46, 509–527 (1974)Google Scholar
  35. Preuschoft, H., Reif, W.-E., Müller, W. H.: Funktionsanpassungen von Haifisch-Zähnen in Form und Struktur. Z. Anat. Entwickl.-Gesch.143, 315–344 (1974)Google Scholar
  36. Rauther, M.: Echte Fische, Teil 1. In: Bronn's Klassen und Ordnungen des Tierreiches, Bd. 6, Abt. I, Buch 2, Teil 1. Leipzig: Akademische Verlagsgesellschaft 1940Google Scholar
  37. Reif, W.-E.: Revision ofHeterodontus bonae-spei Ogilby (1908) (Pisces, Selachü). Copeia1973, 155–176 (1973a)Google Scholar
  38. Reif, W.-E.: Morphologie und Skulptur der Haifisch-Zahnkronen. N. Jb.Geol. PaläontAbh.143, 39–55 (1973b)Google Scholar
  39. Reif, W.-E.: Morphologie und Ultrastruktur des Hai-„Schmelzes”. Zool.Scr.2, 231–250 (1973c)Google Scholar
  40. Reif, W.-E.: Ontogenese des Hautskelettes von Heterodontusfalcifer (Selachü) aus dem Untertithon. Stuttgarter Beitr. Naturk. B, Nr. 7, 16 pp. (1973d)Google Scholar
  41. Reif, W.-E.: Morphogenese und Musterbildung im Hautzähnchen-Skelettvon Heterodontus. Lethaia7, 25–42 (1974a)Google Scholar
  42. Reif, W.-E.: Teeth and dermal denticles ofHeterodontus falcifer (Upper Jurassic) andHeterodontus japonicus (Recent). Summarizing Report. Scientific Report of the Keikyu Aburatsubo Marine Park Aquarium, No. 5, 6 (for 1973, 1974), pp. 16–20 (1974b)Google Scholar
  43. Reif, W.-E.:Metopacanthus sp. (Holocephali) andPalaeospinax egertoni S. Woodward (Selachii) aus dem unteren Toarcium von Holzmaden. Stuttgarter Beiträge Naturk. B, No. 10, 9 pp. (1974c)Google Scholar
  44. Schweizer, R.: Über die Zähnevon Heterodontus semirugosus (Plien.) aus dem Brenztaloolith von Schnaitheim und dem Diceraskalk von Kelheim (Malm Zeta). N. Jb. Geol. Paläont. Abh.113, 95–109 (1961)Google Scholar
  45. Schweizer, R.: Die Elasmobranchier und Holocephalen aus den Nusplinger Plattenkalken. Palaeontographica A123, 58–110 (1964)Google Scholar
  46. Smith, B.G.: The heterodontid sharks: their natural history, and the external development ofHeterodontus japonicus based on notes and drawings by Bashford Dean. In: The Bashford Dean Memorial Volume „Archaic Fishes”, E. W. Gudger, ed., pp. 649–673, Amer. Mus. nat. Hist. Publ. (1942)Google Scholar
  47. Taniuchi, T.: Variation in the teeth of the sand shark,Odontaspis taunts (Rafinesque) taken from the East China Sea. Jap. J. Ichthyol.17, 37–44 (1970)Google Scholar
  48. Taylor, L.: A revision of the shark family Heterodontidae. Dissertation, University of California, San Diego (1972)Google Scholar
  49. Whitley, G.P.: The development of a Port-Jackson Shark. Proc. r. Zool. Soc. N.S.W.1950, 28 (1950)Google Scholar
  50. Wolpert, L.: Positional information and pattern formation. In: Towards a theoretical biology, C.H. Waddington, ed., Vol. 3, pp. 198–230. Edinburgh: University Press 1970Google Scholar
  51. Woodward, A. S.: Catalogue of the fossil fishes in the British Museum. Part 1: Elasmobranchii. London: British Museum 1889Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Wolf -Ernst Reif
    • 1
  1. 1.Institut für Geologie und Paläontologie der UniversitätTübingenFederal Republic of Germany

Personalised recommendations