Acta Applicandae Mathematica

, Volume 39, Issue 1–3, pp 477–487 | Cite as

Recent results on the generalized Kadomtsev-Petviashvili equations

  • Jean-Claude Saut
Part II: Invited Contributions

Abstract

We survey some recent results concerning the generalized Kadomtsev-Petviashvili equations, which are natural extensions of KdV type equations to higher dimensions. We will focus on rigorous results of the Cauchy problem and on the existence and properties of localized solitary waves.

Mathematics subject classification (1991)

58F07 

Key words

KP equations Cauchy problem localized solitary waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M. J. and Clarkson, P. A.:Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.Google Scholar
  2. 2.
    Ablowitz, M. J. and Segur, H.:Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.Google Scholar
  3. 3.
    Besov, O. V., Il'in, V. P., and Nikolskii, S. M.:Integral Representations of Functions and Imbeddings Theorems, Vol. 1, J. Wiley, New York, 1978.Google Scholar
  4. 4.
    Boiti, M., Pempinelli, F., and Pogrebkov, A.: Properties of the Kadomtsev-Petviashvili equation,J. Math. Phys. 35(9) (1994), 4683–4718.Google Scholar
  5. 5.
    Bona, J., Dougalis, V. A., and Karakashian, O. A.: Fully discrete Galerkin methods for the Korteweg-de Vries equations,Comput. Math. Appl. 7 (1986), 859–884.Google Scholar
  6. 6.
    Bourgain, J.: On the Cauchy problem for the Kadomtsev-Petviashvili equations,Geom. Funct. Anal. 3(4) (1993), 315–341.Google Scholar
  7. 7.
    de Bouard, A. and Saut, J. C: Solitary waves of generalized Kadomtsev-Petviashvili equations, Preprint, Université Paris-Sud, 1994.Google Scholar
  8. 8.
    de Bouard, A. and Saut, J. C: in preparation.Google Scholar
  9. 9.
    Faminskii: The Cauchy problem for the Kadomtsev-Petviashvili equation,Russian Math. Surveys 5 (1990), 203–204.Google Scholar
  10. 10.
    Fokas, A. S. and Sung, L. Y.: On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations,Inverse Problems 8 (1992), 673–708.Google Scholar
  11. 11.
    Ginibre, J. and Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited,Ann. Inst. Henri Poincaré, Analyse Non Linéaire 2 (1985), 309–327.Google Scholar
  12. 12.
    Glassey, R.: On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation,J. Math. Phys. 18 (1977), 1794–1797.Google Scholar
  13. 13.
    Isaza, P., Mejia, J., and Stallhohm, V.: Local solution for the Kadomtsev-Petviashvili equation in ℝ2, Preprint, 1993.Google Scholar
  14. 14.
    Kadomtsev, B. B. and Petviashvili, V. I.: On the stability of solitary waves in weakly dispersive media,Soviet Phys. Dokl. 15(6) (1970), 539–541.Google Scholar
  15. 15.
    Lizorkin, P. I.: Multipliers of Fourier integrals,Proc. Steklov Math. Inst. 89 (1967), 269–290.Google Scholar
  16. 16.
    Petviashvili, V. I. and Yan'kov, V. V.: Solitons and turbulence, in B. B. Kadomtsev (ed.),Rev. Plasma Phys. XIV, 1989, 1–62.Google Scholar
  17. 17.
    Saut, J. C.: Remarks on the generalized Kadomtsev-Petviashvili equations,Indiana Math. J. 42(3) (1993), 1011–1026.Google Scholar
  18. 18.
    Saut, J. C: in preparation.Google Scholar
  19. 19.
    Schwarz, M.: Periodic solutions of Kadomtsev-Petviashvili equations,Adv. in Math. 66 (1987), 217–233.Google Scholar
  20. 20.
    Spector, M. D. and Miloh, T.: Stability of nonlinear periodic internal waves in a deep stratified fluid,SIAM J. Appl. Math. 54(3) (1994), 688–707.Google Scholar
  21. 21.
    Turitsyn, S. K. and Falkovitch, G. E.: Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnet,Soviet Phys. JETP 62 (1985), 146–152.Google Scholar
  22. 22.
    Ukai, S.: Local solutions of the Kadomtsev-Petviashvili equation,J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 36 (1989), 193–209.Google Scholar
  23. 23.
    Vlasov, S. B., Petrishev, V. A., and Talanov, V. I.:Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14 (1971), 1352;Radiophys. Quantum Electronics 14 (1974), 1062.Google Scholar
  24. 24.
    Wang, X. P., Ablowitz, M. J., and Segur, H.: Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation,Physica D78 (1994), 97–113.Google Scholar
  25. 25.
    Wickerhauser, M. V.: Inverse scattering for the heat operators and evolutions in (2+1) variables,Comm. Math. Phys. 108 (1987), 67–89.Google Scholar
  26. 26.
    Zhou, X.: Inverse scattering transform for the time dependent Schrödinger equation with applications to the KP-I equation,Comm. Math. Phys. 128 (1990), 551–564.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jean-Claude Saut
    • 1
  1. 1.CNRS et Université Paris-Sud, URA 760, Bâtiment 425Université Paris-SudOrsayFrance

Personalised recommendations