Advertisement

Acta Applicandae Mathematica

, Volume 39, Issue 1–3, pp 93–125 | Cite as

Algebraic-geometrical methods in the theory of integrable equations and their perturbations

  • I. Krichever
Part I: Invited Plenary Lectures

Mathematics subject classification (1991)

58F07 

Key words

integration finite-gap theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubrovin, B., Matveev, V., and Novikov, S.: Non-linear equations of Korteweg-de Vries type, finite zone linear operators and Abelian varieties,Uspekhi Mat. Nauk 31(1) (1976), 55–136.Google Scholar
  2. 2.
    Zakharov, V., Manakov, S., Novikov, S., and Pitaevski, L.:Soliton Theory, Nauka, Moscow, 1980.Google Scholar
  3. 3.
    Lax, P.: Periodic solutions of Korteweg-de Vries equation,Comm. Pure Appl. Math. 28 (1975), 141–188.Google Scholar
  4. 4.
    McKean, H. and van Moerbeke, P.: The spectrum of Hill's equation,Invent. Math. 30 (1975), 217–274.Google Scholar
  5. 5.
    Krichever, I. M.: The algebraic-geometrical construction of Zakharov-Shabat equations and their periodic solutions,Doklady Akad. Nauk USSR 227(2) (1976), 291–294.Google Scholar
  6. 6.
    Krichever, I.: The integration of non-linear equations with the help of algebraic-geometrical methods,Funk. Anal. Pril. 11(1) (1977), 15–31.Google Scholar
  7. 7.
    Krichever, I.: Spectral theory of two-dimensional periodic operators and its applications,Uspekhi Mat. Nauk 44(2) (1989), 121–184.Google Scholar
  8. 8.
    Krichever, I.: Averaging method for two-dimensional integrable equations,Funk. Anal. Pril. 22(3) (1988), 37–52.Google Scholar
  9. 9.
    Feldmann, J., Knorrer, H., and Trubowitz, E.: Riemann surfaces of the infinite genus, Preprint ETH, Zurich.Google Scholar
  10. 10.
    Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations,Invent. Math. 83 (1986), 333–382.Google Scholar
  11. 11.
    Takebe, T.: Representation theoretical meaning for the initial value problem for the Toda lattice hierarchy: I,Lett. Math. Phys. 21 (1991), 77–84.Google Scholar
  12. 12.
    Sato, M.: Soliton equations and universal Grassmann manifold,Math. Lect. Notes Ser. 18, Sophia University, Tokyo, 1984.Google Scholar
  13. 13.
    Dubrovin, B., Krichever, I., and Novikov, S.: The Schrödinger equation in a periodic field and Riemann surfaces,Soviet Dokl. 229(1) (1976), 15–18.Google Scholar
  14. 14.
    Krichever, I.: Theτ-function of the universal Whitham hierarchy, matrix models and topological field theories,Comm. Pure Appl. Math. 47 (1994), 437–475.Google Scholar
  15. 15.
    Takasaki, K. and Takebe, K.: SDiff(2) Toda equation hierarchy, tau-function and symmetries, Preprint RIMS-790, Kyoto.Google Scholar
  16. 16.
    Takebe, K.: Area-preserving diffeomorphisms and nonlinear integrable systems, in:Proceedings of Topological and Geometrical Methods in Field Theory, May 1991, Turku, Finland.Google Scholar
  17. 17.
    Saveliev, M.: On the integrability problem of the continuous long wave approximation of the Toda lattice, Preprint ENSL, Lyon, 1992.Google Scholar
  18. 18.
    Zakharov, V.: Benney equations and quasi-classical approximation in the inverse problem method,Funk. Anal. Pril. 14(2) (1980), 89–98.Google Scholar
  19. 19.
    Tsarev, S.: The geometry of Hamiltonian systems of hydrodynamic type,Izvest. USSR, Ser. Matem. 54(5) (1990), 96–154.Google Scholar
  20. 20.
    Dubrovin, B. and Novikov, S.: The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and Bogolyubov-Whitham averaging method,Sov. Math. Dokl. 27 (1983) 665–669.Google Scholar
  21. 21.
    Dubrovin, B. and Novikov, S.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory,Russ. Math. Surveys 44(6) (1989), 35–124.Google Scholar
  22. 22.
    Novikov, S.: The geometry of conservative systems of hydrodynamics type. The method of averaging for field-theoretical systems,Russ. Math Surveys 40(4) (1985), 85–98.Google Scholar
  23. 23.
    Krichever, I.: The dispersionless Lax equations and topological minimal models,Comm. Math. Phys. 143(2) (1992), 415–429.Google Scholar
  24. 24.
    Krichever, I.: Whitham theory for integrable systems and topological field theories, to appear in:Proceedings of Summer Cargese School, July, 1991.Google Scholar
  25. 25.
    Verlinder, E. and Verlinder, H.: A solution of two-dimensional topological quantum gravity, Preprint IASSNS-HEP-90/40, PUPT-1176, 1990.Google Scholar
  26. 26.
    Dubrovin, B.: Hamiltonian formalism of Whitham-type hierarchies and topological LandauGinsburg models,Comm. Math. Phys. 145(1) (1992), 195–207.Google Scholar
  27. 27.
    Dubrovin, B.: Differential geometry of moduli spaces and its application to soliton equations and to topological conformal field theory, Preprint No. 117, Scuola Normale Superiore, Pisa, November 1991.Google Scholar
  28. 28.
    Blok, B. and Varchenko, A.: Topological conformal field theories and the fiat coordinates,Int. J. Modern Phys. A 7, 1467–1490.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • I. Krichever
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations