Journal of Chemical Ecology

, Volume 17, Issue 1, pp 207–215 | Cite as

Adaptive significance of furanocoumarin diversity inPastinaca sativa (Apiaceae)

  • May R. Berenbaum
  • James K. Nitao
  • Arthur R. Zangerl
Article

Abstract

Fruits ofPastinaca sativa (Apiaceae), the edible parsnip, contain six different furanocoumarins that are differentially capable of ultraviolet-mediated cross-linkage of DNA and inhibition of DNA transcription. Individually, none of the other furanocoumarins present in parsnip seeds is as toxic as the photosensitizer xanthotoxin. Nevertheless, the natural mixture of compounds is toxicologically more effective againstHeliothis zea (Lepidoptera: Noctuidae), both in the presence and absence of UV light, than is an equimolar amount of xanthotoxin. The difference in toxicity diminishes with increasing light levels. Thus, a series of structurally related natural products can display toxicity lacking in individual compounds and may represent an adaptive compromise to varying environmental conditions.

Key Words

Heliothis zea corn earworm Lepidoptera Noctuidae Pastinaca sativa wild parsnip Apiaceae furanocoumarins defense xanthotoxin photoactivation bioassay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashwood-Smith, M.J., Poulton, G.A., Barker, M., andMildenberger, M. 1980. 5-Methoxypsoralen, an ingredient in several suntan preparations, has lethal, mutagenic and clastogenic properties.Nature 285:407–410.Google Scholar
  2. Berenbaum, M. 1978. Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insect herbivores.Science 201:532–534.Google Scholar
  3. Berenbaum, M. 1985. Brementown revisited: Interactions among allelochemicals in plants.Recent Adv. Phytochem. 19:139–169.Google Scholar
  4. Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1984. Furanocoumarins in seeds of wild and cultivated parsnip.Phytochemistry 23:1809–1810.Google Scholar
  5. Caffieri, S., Daga, A., Vedaldi, D., andDall'acqua, F. 1988. Photoaddition of angelicin to linolenic acid methylester.J. Photochem. Photobiol, B. Biol. 2:515–521.Google Scholar
  6. Chew, F.S., andRodman, J.E. 1979. Plant resources for chemical defense, pp. 271–308,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  7. Grossweiner, L.I. 1984. Mechanisms of photosensitization by furocoumarins, pp. 47–54,in Photobiologic, Toxicologic and Pharmacologic Aspects of Psoralens. National Cancer Institute Monograph 66. U.S. Department of Health and Human Services, Bethesda, Maryland.Google Scholar
  8. Ivie, G.W. 1978. Linear furocoumarins (Psoralens) from the seed of TexasAmmi majus L (Bishop's weed).J. Agric. Food Chem. 26:1394–1403.Google Scholar
  9. Ivie, G.W., Holt, D.L., Ivey, M.C. 1981. Natural toxicants in human foods: Psoralens in raw and cooked parsnip root.Science 213:909–910.Google Scholar
  10. Kogan, J., Sell, D.K., Stinner, R.E., Bradley, J.R., andKogan, M. 1978. V. A Bibliography ofHeliothis zea (Boddie) andH. virescens (F.) (Lepidoptera: Noctuidae). INTSOY series number 17. International Agricultural Publications. Urbana, Illinois.Google Scholar
  11. McKey, D. 1979. The distribution of secondary compounds within plants, pp. 56–133,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  12. Murray, R.D.H., Mendez, J., andBrown, S.A. 1982. The Natural Coumarins. John Wiley & Sons, Chichester, England.Google Scholar
  13. Musajo, L., Rodighiero, G., Caporale, G., Dall'acqua, F., Marciana, S., Bordin, F., Baccichetti, F., andBevilacqua, R. 1974. Photoreactions between skin-photosensitizing furocoumarins and nucleic acids, pp. 369–387,in T.B. Fitzpatrick, M.A. Pathak, L.C. Harber, M. Seiji, and A. Kukita (eds.). Sunlight and Man: Normal and Abnormal Photobiologic Reactions. University of Tokyo Press, Tokyo.Google Scholar
  14. Nitao, J.K., andZangerl, A.R. 1987. Floral development and chemical defense allocation in wild parsnip (Pastinaca sativa).Ecology 68:521–529.Google Scholar
  15. Nitao, J.K., andBerenbaum, M.R. 1988. Laboratory rearing of the parsnip webworm,Depressaria pastinacella (Lepidoptera:Oecophoridea).Ann. Entomol. Soc. Am. 81:485–487.Google Scholar
  16. Pathak, M.A., andFitzpatrick, T.B. 1959. Relationship of molecular configuration to the activity of furocoumarins which increase the cutaneous responses following long wave ultraviolet radiation.J. Invest. Dermatol. 32:255–264.Google Scholar
  17. Yajima, T., Kato, N., andMunakatta, R. 1977. Isolation of insect antifeeding principles inOrixa japonica.Thunb. Ag. Biol. Chem. 41:1263–1268.Google Scholar
  18. Zangerl, A.R., andBerenbaum, M.R. 1987. Furanocoumarins in wild parsnip: Effects of photosynthetically active radiation, ultraviolet light, and nutrients.Ecology 68:516–520.Google Scholar
  19. Zangerl, A.R., andBerenbaum, M.R. 1990. Furanocoumarin induction in wild parsnip: Genetics and populational variation.Ecology. 71:1933–1940.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • May R. Berenbaum
    • 1
  • James K. Nitao
    • 2
  • Arthur R. Zangerl
    • 1
  1. 1.Department of EntomologyUniversity of IllinoisUrbana
  2. 2.Department of EntomologyMichigan State UniversityEast Lansing

Personalised recommendations