Advertisement

Journal of Chemical Ecology

, Volume 17, Issue 2, pp 391–399 | Cite as

Responses of two hymenopteran predators to surface Chemistry of their prey: Significance for an alkaloid-sequestering caterpillar

  • C. B. Montllor
  • E. A. Bernays
  • M. L. Cornelius
Article

Abstract

Larvae ofUresiphita reversalis (Guenée) (Lepidoptera: Pyralidae) sequester quinolizidine alkaloids from their leguminous hosts and store them primarily in the cuticle. Stored alkaloids are lost with the last larval molt. Extracts of late-instar larvae and of pupae were applied to larvae of the potato tuber moth,Phthorimaea operculella (Zeller) (Gelichiidae), which are normally palatable to two hymenopteran predators, the Argentine ant,Iridomyrmex humilis (Mayr) (Formicidae), and the paper wasp,Mischocyttarus flavitarsus (Sauss.) (Vespidae). Larvae ofP. operculella treated with alkaloid extracts ofU. reversalis larval exuviae, or with surface extracts of whole larvae, were deterrent to both predators, compared to untreated prey. Extracts of pupal exuviae added toP. operculella, however, were not deterrent.P. operculella larvae treated with the authentic alkaloids sparteine and cytisine were also deterrent to these hymenopteran predators. Storage of small but concentrated amounts of plant secondary compounds in the cuticle appears to be an efficacious means of defense against at least two common predators of lepidopteran larvae.

Key Words

Lepidoptera Hymenoptera predation sequestration chemical defense cuticle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenbaum, M. R., andMiliczky, E., 1984. Mantids and milkweed bugs: efficacy of aposematic coloration against invertebrate predators.Am. Midi. Nat. 111:64–68.Google Scholar
  2. Bernays, E. A. 1988. Host specificity in phytophagous insects: Selection pressure from generalist predators.Entomol. Exp. Appl. 49:131–140.Google Scholar
  3. Bernays, E. A., andCornelius, M. L. 1989. Relative acceptability of caterpillars with different host range to the generalist predatorIridomyrmex humilis.Oecologia 79:427–430.Google Scholar
  4. Bernays, E. A., andMontllor, C. B. 1989. Aposematism ofUresiphita reversalis larvae (Pyralidae).J. Lep. Soc. 43:261–273.Google Scholar
  5. Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York. 562 pp.Google Scholar
  6. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids.J. Chem. Ecol. 16:165–186.Google Scholar
  7. Bowers, M. D., andLarin, Z. 1989. Acquired chemical defense in the lycaenid butterfly,Elimaeus atala.J. Chem. Ecol. 15:1133–1146.Google Scholar
  8. Brattsten, L. B. 1986. Fate of ingested plant allelochemicals in herbivorous insects, pp. 211–255,in L. B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  9. Brower, L. P. 1984. Chemical defense in butterflies, pp. 109–133,in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Symposium of the Royal Entomological Society, London, Vol. VII. Princeton University Press, Princeton, New Jersey.Google Scholar
  10. Dempster, J. P. 1984. The natural enemies of butterflies, pp. 97–104,in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Symposium of the Royal Entomological Society, London, Vol. VII. Princeton University Press, Princeton, New Jersey.Google Scholar
  11. Egelhaaf, A., Cöllin, K., Schmitz, B., Buck, M., Wink, M., andSchneider, D. 1990. Organ specific storage of dietary pyrrolizidine alkaloids.Z. Naturforsch. 45c: 115–120.Google Scholar
  12. Feeny, P., Blau, W. S., andKareiva, P. M. 1985. Larval growth and survivorship of the black swallowtail butterfly in central New York.Ecol. Monogr. 52:167–187.Google Scholar
  13. Franzl, S., Naumann, C. M., andNahrstedt, A. 1988. Cyanoglycoside storing cuticle ofZygaena larvae.Zoomorphology 108:183–190.Google Scholar
  14. Gould, W. P., andJeanne, R. L. 1984.Polistes wasps (Hymenoptera: Vespidae) as control agents for lepidopteran cabbage pests.Environ. Entomol. 13:150–156.Google Scholar
  15. Jones, D. A., Parsons, J., andRothschild, M. 1962. Released hydrocyanic acid from crushed tissues of all stages of the life cycle of species of Zygaeninae (Lepidoptera).Nature 193:52–53.Google Scholar
  16. Jones, R. E., 1987. Ants, parasitoids, and the cabbage butterflyPieris rapae.J. Anim. Ecol. 56:739–749.Google Scholar
  17. Kelly, R. B., Seiber, J. N., Jones, D. D., Segall, H. J., andBrower, L. P. 1987. Pyrrolizidine alkaloids in overwintering monarch butterflies (Danaus plexippus) from Mexico.Experientia 43:943–946.Google Scholar
  18. Laine, K. J., andNiemela, P. 1980. The influence of ants on the survival of mountain birches during anOporinia autumnata (Lep., Geometridae) outbreak.Oecologia 47:39–42.Google Scholar
  19. Montllor, C. B., Bernays, E. A., andBarbehenn, R. V. 1990. Importance of quinolizidine alkaloids in the relationship between larvae ofUresiphita reversalis (Lepidoptera: Pyraiidae) and a host plant,Genista monspessulana.J. Chem. Ecol. 16:1853–1865.Google Scholar
  20. Nahrstedt, A., andDavis, R. H. 1983. Occurence, variation and biosynthesis of the cyanogenic glycosides linamarin and lotuaustralin in species of the Heliconini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 758:65–73.Google Scholar
  21. Risch, S. J., andCarroll, C. R. 1982. Effect of a keystone predaceous ant,Solenopsis geminata, on arthropods in a tropical agroecosystem.Ecology 63:1979–1983.Google Scholar
  22. Rothschild, M., Rowan, M. G., andFairbairn, J. W. 1977. Storage of cannabinoids byArctia caja andZonocerus elegans fed on chemically distinct strains ofCannabis sativa.Nature 266:650–651.Google Scholar
  23. Rothchild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P. andLees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae.Biol. J. Linn. Soc. 12:305–326.Google Scholar
  24. Shaw, P. B., Owens, J. C., Huddleston, E. W., andRichman, D. B. 1987. Role of arthropod predators in mortality of early instars of the range caterpillar,Hemileuca oliviae (Lepidoptera: Saturniidae).Environ. Entomol. 16:814–820.Google Scholar
  25. Skinner, G. J., andWhittaker, J. B. 1981. An experimental investigation of interrelationships between the wood-ant (Formica rufa) and some tree-canopy herbivores.J. Anim. Ecol. 50:313–326.Google Scholar
  26. Stamp, N. E., andBowers, M. D. 1988. Direct and indirect effects of predatory wasps (Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: Saturniidae).Oecologia 75:619–624.Google Scholar
  27. Steward, V. B., Smith, K. G., andStephen, F. M. 1988. Predation by wasps on lepidopteran larvae in an Ozark forest canopy.Ecol. Entomol. 13:81–86.Google Scholar
  28. vonNickisch-Rosenegk, E., Detzel, A., Wink, M., andSchneider, D. 1990a. Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering moth,Syntomeida epilais.Naturwissenchaften 77:336–338.Google Scholar
  29. vonNickisch-Rosenegk, E., Scheider, D., andWink, M. 1990b. Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth,Creatonotos transiens.Z. Naturforsch. 45c:881–894.Google Scholar
  30. Watt, A. D. 1989. The growth and survival ofPanolis flammea larvae in the absence of predators on Scots pine and lodgepole pine.Ecol. Entomol. 14:225–234.Google Scholar
  31. Weseloh, R. M. 1989. Simulation of predation by ants based on direct observations of attacks on gypsy moth larvae.Can. Entomol. 121:1069–1076.Google Scholar
  32. Wink, M., andSchneider, D. 1988. Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting mothCreatonotos. Naturwissenschaften 75:524–525.Google Scholar
  33. Witz, B. W. 1990. Antipredator mechanisms in arthropods: a twenty-year literature survey.Fl. Entomol. 73:71–99.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • C. B. Montllor
    • 1
  • E. A. Bernays
    • 1
  • M. L. Cornelius
    • 1
  1. 1.Division of Biological ControlUniversity of CaliforniaBerkeley

Personalised recommendations