Plant Systematics and Evolution

, Volume 187, Issue 1–4, pp 89–102

ThechlL (frxC) gene: Phylogenetic distribution in vascular plants and DNA sequence fromPolystichum acrostichoides (Pteridophyta) andSynechococcus sp. 7002 (Cyanobacteria)

  • Donald H. Burke
  • Linda A. Raubeson
  • Marie Alberti
  • John E. Hearst
  • Elizabeth T. Jordan
  • Susan A. Kirch
  • Angela E. C. Valinski
  • David S. Conant
  • Diana B. Stein
Article
  • 56 Downloads

Abstract

We examinedchlL (frxC) gene evolution using several approaches. Sequences from the chloroplast genome of the fernPolystichum acrostichoides and from the cyanobacteriumSynechococcus sp. 7002 were determined and found to be highly conserved. A complete physical map of the fern chloroplast genome and partial maps of other vascular plant taxa show thatchlL is located primarily in the small single copy region as inMarchantia polymorpha. A survey of a wide variety of non-angiospermous vascular plant DNAs shows thatchlL is widely distributed but has been lost in the pteridophytePsilotum and (presumably independently) within the Gnetalean gymnosperms.

Key words

Cyanobacteria Pteridophyta gymnosperms Synechococcus Polystichum acrostichoides Psilotum Welwitschia chlL (frxC) gene chlorophyll synthesis chloroplast genome DNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, H., Packer, N., 1984: Dark synthesis of chlorophyll in vivo and dark reduction of protochlorophyllide in vitro by pea chloroplasts. — InJunk, W., (Ed.): Protochlorophyllide reduction and greening, pp. 353–363. — The Hague, Boston, Lancaster: Martinus Nijhoff.Google Scholar
  2. Bogdanović, M., 1973: Chlorophyll formation in the dark. I. Chlorophyll in pine seedlings. — Physiol. Plant.29: 17–18.Google Scholar
  3. Brutlag, D. L., Dautricourt, J. P., Maulik, S., Relph, J., 1990: Improved sensitivity of biological sequence database searches. — Computer Applic. Biosci.6: 237–245.Google Scholar
  4. Burke-Aquero, D. H., 1992: Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis gene ofRhodobacter capsulatus. — Ph. D. Thesis. Berkeley, CA: University of California.Google Scholar
  5. Burke, D. H., Alberti, M., Hearst, J. E., 1993a: TheRhodobacter capsulatus chlorin reductase encoding locus,bchA, consists of three genes,bch x,bch Y, andbch Z. — J. Bacteriol.175: 2407–2413.Google Scholar
  6. ,, , 1993b:bchFNBH bacteriochlorophyll synthesis genes ofRhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. — J. Bacteriol.175: 2414–2432.Google Scholar
  7. ,, 1991: Chlorophyll Fe proteins and other chlorophyll synthesis genes fromRhodobacter capsulatus to higher plants (abstr). — Photochem. Photobiol. (Suppl)53: 85S-86S.Google Scholar
  8. -Hearst, J. E., Sidow, A., 1993c: Early evolution of photosynthesis: clues from nitrogenase and from the chlorophyll iron proteins. — Proc. Natl. Acad. Sci. (in press).Google Scholar
  9. Castelfranco, P. A., Beale, S. I., 1983: Chlorophyll biosynthesis: recent advances and areas of current interest. — Ann. Rev. Pl. Physiol.34: 241–278.Google Scholar
  10. Choquet, Y., Rahire, M., Girard-Bascou, J., Erickson, J., Rochaix, J.-D., 1992: A chloroplast gene is required for the light-independent accumulation of chlorophyll inChlamydomonas reinhardtii. — EMBO J11: 1697–1704.Google Scholar
  11. Compton, T., 1990: Degenerate primers for DNA amplification. — In PCR protocols: a guide to methods and applications, pp. 39–45. — San Diego, CA: Academic Press.Google Scholar
  12. Crane, P. S., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.Google Scholar
  13. Darrah, M., Kay, S. A., Teakle, G. R., Griffiths, W. T., 1990: Cloning and sequencing of protochlorophyllide reductase. — Biochem. J.265: 789–798.Google Scholar
  14. Doyle, J. A., Donoghue, M. J., 1986: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. — Bot. Rev.52: 321–431.Google Scholar
  15. Ford, C., Wang, W.-Y., 1980a: Three newyellow loci inChlamydomonas reinhardtii. — Mol. Gen. Genet.179: 259–263.Google Scholar
  16. ,, 1980b: Temperature-sensitiveyellow mutants ofChlamydomonas reinhardtii. — Mol. Gen. Genet.180: 5–10.Google Scholar
  17. Fujita, Y., Takahashi, Y., Chunganji, M., Matsubara, H., 1992: ThenifH-likefrxC gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacteriumPlectonema boryanum. — Pl. Cell Physiol.33: 81–92.Google Scholar
  18. ,, 1989: Identification of a novelnifH-likefrxC protein in chloroplasts of the liverwortMarchantia polymorpha. — Pl. Mol. Biol.13: 551–561.Google Scholar
  19. Gold, L., Stromo, G., 1987: Translational initiation. — InNeidhardt, F. C., (Ed.): Cellular and molecular biology ofEscherichia coli andSalmonella typhimurium, pp. 1302–1307. — Washington, D.C.: American Society of Microbiology.Google Scholar
  20. Griffiths, W. T., 1991: Protochlorophyllide photoreduction. — InScheer, H., (Ed.): Chlorophylls, pp. 433–450. — Boca Ratón, CRC Press.Google Scholar
  21. Hamby, R. K., Zimmer, E. A., 1991: Ribosomal RNA as a phylogenetic tool in plant systematics. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 50–91. — New York: Chapman & Hall.Google Scholar
  22. Hearst, J. E., Alberti, M., Doolittle, R. F., 1985: A putative nitrogenase reductase gene found in the nucleotide sequence from the photosynthetic gene cluster ofR. capsulata. — Cell40: 219–220.Google Scholar
  23. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sukamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., 1989: The complete sequence of the riceOryza sativa chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. — Mol. Gen. Genet.217: 185–194.Google Scholar
  24. Lidholm, J., Gustafsson, P., 1991: Homologs of the green algalgidA gene and the liverwortfrxC gene are present on the chloroplast genomes of conifers. — Pl. Mol. Biol.17: 787–798.Google Scholar
  25. Madigan, M. D., Guest, H., 1978: Growth of a photosynthetic bacterium anaerobically in darkness, supported by oxidant-dependent sugar fermentation. — Arch. Microbiol.117: 119–122.Google Scholar
  26. Meyer, J., 1988: The evolution of ferredoxins. — Trends Evol. Ecol.3: 222–226.Google Scholar
  27. Ogura, Y., Takemura, M., Oda, K., Yamato, K., Ohta, E., Fukuzawa, H., Ohyama, K., 1992: Cloning and nucleotide sequence of afrxC-ORF 469 gene cluster ofSynechocystis PCC 6803—Conservation with liverwort chloroplastfrxC—ORF 465 andnif operon. — Biosci. Biotech. Biochem.56: 788–793.Google Scholar
  28. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, T., Takeuchi, M., Chang, Z., Aota, S.-T., Inokuchi, H., Ozeki, H., 1986: Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. — Nature (London)322: 572–574.Google Scholar
  29. Olmstead, R., Palmer, J. D., 1992: A chloroplast DNA phylogeny of theSolanaceae: Subfamilial relationships and character evolution. — Ann. Missouri Bot. Gard.79: 346–360.Google Scholar
  30. Palmer, J. D., 1986: Isolation and structural analysis of chloroplast DNA. — Meth. Enzym.118: 167–186.Google Scholar
  31. Raubeson, L. A., 1991: Structural variation in the chloroplast genome of vascular plants. — Ph. D. Thesis. New Haven, CT: Yale University.Google Scholar
  32. Roitgrund, C., Mets, T., 1990: Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. — Curr. Genet.17: 147–153.Google Scholar
  33. Sambrook, J., Fritsch, E. F., Maniatis, T., 1989: Molecular cloning, a laboratory manual. 2nd edn. — Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  34. Sanger, F., Nicklen, S., Coulson, A. R., 1977: DNA sequencing with chain-terminating inhibitors. — Proc. Natl. Acad. Sci. USA74: 5463–5467.Google Scholar
  35. Schultz, R., Steinmüller, K., Klass, M., Forreiter, C., Rasmussen, S., Hiller, C., Apel, K., 1989: Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barleyHordeum vulgare L. and its expression inEscherichia coli. — Mol. Gen. Genet.217: 355–361.Google Scholar
  36. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Yamaguchi-Shinozaki, K., Ohto, C., Totazawa, K., Obokata, J., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M., 1986: The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. — EMBO J.5: 2043–2049.Google Scholar
  37. Stein, D. B., 1993: Isolating and comparing nucleic acids from land plants: nuclear and other organellar genes. — Meth. Enzym.244: 153–167.Google Scholar
  38. , 1992: Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. — Proc. Natl. Acad. Sci. USA89: 1856–1860.Google Scholar
  39. Suzuki, J., Bauer, C. E., 1992: Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene,chlL. — Pl. Cell4: 929–940.Google Scholar
  40. Yamada, K., Matsuda, M., Fujita, Y., Matsubara, H., Sugai, M., 1992: AfrxC homolog exists in the chloroplast DNAs from various pteridophytes and in gymnopserms. — Pl. Cell Physiol.33: 325–327.Google Scholar
  41. Yang, Z., Bauer, C., 1990:Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthesis pathway. — J. Bact.172: 5001–5010.Google Scholar
  42. Yen, H.-C., Marrs, B., 1977: Growth ofRhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. — Arch. Biochem. Biophys.181: 411–418.Google Scholar
  43. Youvan, D. C., Bylina, E. J., Alberti, M., Begush, H., Hearst, J. E., 1984: Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B 870 antenna, and flanking polypeptides fromR. capsulata. — Cell37: 949–957.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Donald H. Burke
    • 1
  • Linda A. Raubeson
    • 3
  • Marie Alberti
    • 1
  • John E. Hearst
    • 1
  • Elizabeth T. Jordan
    • 3
  • Susan A. Kirch
    • 3
  • Angela E. C. Valinski
    • 3
  • David S. Conant
    • 6
  • Diana B. Stein
    • 3
  1. 1.Department of ChemistryUniversity of California, and Division of Structural Biology, Lawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA
  3. 3.Department of Biological SciencesMount Holyoke CollegeSouth HadleyUSA
  4. 4.Department of Biological ChemistryUniversity of MichiganAnn ArborUSA
  5. 5.Department of Cellular and Developmental BiologyHarvard UniversityCambridgeUSA
  6. 6.Department of Natural SciencesLyndon State CollegeLyndonvilleUSA

Personalised recommendations