Advertisement

Journal of Chemical Ecology

, Volume 18, Issue 9, pp 1641–1659 | Cite as

Electroantennogram responses of the cabbage seed weevil,Ceutorhynchus assimilis, to oilseed rape,Brassica napus ssp.Oleifera, volatiles

  • K. A. Evans
  • L. J. Allen-Williams
Article

Abstract

Electroantennograms (EAGs) were recorded from male and female cabbage seed weevils (Ceutorhynchus assimilis Payk.) in response to volatiles isolated and identified from the odor of oilseed rape (Brassica napus ssp.oleifera DC. cv. Ariana). Relatively large EAGs were obtained on stimulation with volatiles produced by the oilseed rape crop at the time when seed weevils were actively searching for host plants. Artificial rape odor without certain key volatile compounds was in most cases significantly less stimulatory than odor containing these volatiles. There were significant differences in the EAG response of the sexes ofC. assimilis to the green leaf volatiles of oilseed rape and several terpenes present in rape flower odor. The importance of the qualitative and quantitative composition of host-plant odor in host location byC. assimilis is discussed.

Key Words

Ceutorhynchus assimilis Coleoptera Curculionidae Brassica napus semiochemicals plant volatiles olfaction host plant attractant electroantennogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, J., Lecomte, C., andThibout, E. 1989. Leek odour analysis by gas chromatography and identification of the most active substance for the leek moth,Acrolepiopsis asscetella.J. Chem. Ecol. 15:1847–1854.Google Scholar
  2. Blight, M.M., Pickett, J.A., Wadhams, L.J., andWoodcock, C.M. 1989. Antennal responses ofCeutorhyncus assimilis andPsylloides chrysocephala to volatiles from oilseed rape. Production and protection of oilseed rape and otherBrassica crops.Aspects Appl. Biol. 23:329–334.Google Scholar
  3. Buttery, R.G. 1981. Vegetable and fruit flavors, pp. 175–216,in R. Teranishi, R.A. Flath, and H. Sugisawa (eds.). Flavor Research, Recent Advances. Marcel Dekker, New York.Google Scholar
  4. Buttery, R.G., Guadagni, D.G., Ling, L.C., Seifert, R.M., andLipton, W. 1976. Additional volatile components of cabbage, broccoli, and cauliflower.J. Agric. Food Chem. 24:829–832.Google Scholar
  5. Buttery, R.G., Ling, L.C., andWellso, S.G. 1982. Oat leaf volatiles: Possible insect attractants.J. Agric. Food Chem. 30:791–792.Google Scholar
  6. Cole, R.A. 1976. Isothiocyanates, nitriles, and thiocyanates as products of autolysis of glucosinolates in Cruciferae.Phytochemistry 15:759–762.Google Scholar
  7. Daxenbichler, M.E., Vanetten, C.H., andWilliams, P.H. 1979. Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage.J. Agric. Food Chem. 27:34–36.Google Scholar
  8. Dickens, J.C. 1984. Olfaction in the boll weevil,Anthomonus grandis Boh. (Coleoptera: Curculionidae): Electroantennogram studies.J. Chem. Ecol. 10:1059–1085.Google Scholar
  9. Drozdowska, L., andRogozinska, J. 1982. The occurrence of glucosinolates during the flowering and maturation of oilseed rape (Brassica napus L.).Acta Agrobot. 35:25–29.Google Scholar
  10. Eagles, J., Fenwick, G.R., andHeaney, R.K. 1981. Gas chromatography chemical ionization mass spectrometry of Glucosinolate derivatives.Biomed. Mass Spectrom. 8:278–282.Google Scholar
  11. Evans, K.A. 1990. The role of secondary plant metabolites in host-location by the cabbage seed weevil,Ceutorhynchus assimilis Payk.Symp. Biol. Hung. 39:459–460.Google Scholar
  12. Evans, K.A. 1991. The role of secondary plant metabolites in host-plant location by insect pests of oilseed rapeBrassica napus L. PhD thesis. Hatfield Polytechnic, England.Google Scholar
  13. Evans, K.A., andAllen-Williams, L.J. 1989. The response of the cabbage seed weevil (Ceutorhyncus assimilis Payk.) and the brassica pod midge (Dasineura brassicae Winn.) to flower colour and volatiles of oilseed rape. Production and protection of oilseed rape and otherBrassica crops.Aspects Appl. Biol. 23:347–354.Google Scholar
  14. Feeny, P. 1976. Plant apparency and chemical defense. Biochemical Interaction between Plants and Insects.Recent Adv. Phytochem. 10:1–40.Google Scholar
  15. Fenwick, G.R., Heaney, R.K., andMullin, W.J. 1983. Glucosinolates and their breakdown products in food and food plants.CRC Crit. Rev. Food Sci. Nutr. 18:123–201.Google Scholar
  16. Finch, S. 1977. Effect of secondary plant substances on host-plant selection by the cabbage root fly.Colloq. Int. C.N.R.S. 265:251–267.Google Scholar
  17. Finch, S. 1978. Volatile plant chemicals and their effect on host-plant finding by the cabbage root fly (Delia brassicae).Entomol. Exp. Appl. 24:350–359.Google Scholar
  18. Finch, S. 1986. Assessing host-plant finding by insects, pp. 23–63,in J.R. Miller and T.A. Miller (eds.). Insect-Plant Interactions. Springer-Verlag, New York.Google Scholar
  19. Free, J.B., andWilliams, I.A. 1978. The responses of the pollen beetle,Meligethes aeneus, and the seed weevil,Ceuthorhyncus assimilis to oilseed rape, and other plants.J. Appl. Ecol. 15:761–764.Google Scholar
  20. Görnitz, K. 1953. Untersuchungen über in Cruciferen enthaltene Insekten-Attraktivstoffe.Nachrichienbl.Dtsch. Pflanzenschutzdienst 7:81–95.Google Scholar
  21. Guerin, P.M., andVisser, J.H. 1980. Electroantennogram responses of the carrot fly,Psila rosae, to volatile plant components.Physiol. Entomol. 5:11–119.Google Scholar
  22. Guerin, P.M., andStädler, E. 1982. Host odour perception in three phytophagous Diptera-a comparative study, pp. 95–105,in J.H. Visser and A.K. Minks (eds.).Proceedings 5th International Symposium on Insect-Plant Relationships. Pudoc, Wageningen.Google Scholar
  23. Guerin, P.M., Städler, E., andBuser, H.R. 1983. Identification of host-plant attractants for the carrot fly,Psila rosae. J. Chem. Ecol. 9:843–866.Google Scholar
  24. Hamilton-Kemp, T.R., Andersen, R.A., Rodriguez, J.G., Loughrin, J.H., andPatterson, C.G. 1988. Strawberry foliage headspace vapor components at periods of susceptibility and resistance toTetranychus urticae Koch.J. Chem. Ecol. 14:789–796.Google Scholar
  25. Hansson, B.S., Van Der Pers, J.N.C., andLofqvist, J. 1989. Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth,Agrotis segetum.Physiol. Entomol. 14:147–155.Google Scholar
  26. Jennings, W., andShibamoto, T. 1980. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic Press, New York.Google Scholar
  27. Kameoka, H. 1984. Analysis of sulfur and nitrogen compounds from Cruciferae by gas chromatography-mass spectrometry.Koryo 142:19–29.Google Scholar
  28. Kameoka, H. 1986. GC-MS method for volatile flavour components of foods,in H.F. Linskens and J.F. Jackson (eds.). Gas Chromatography/Mass Spectrometry. Springer-Verlag, Berlin.Google Scholar
  29. Kjaer, A., Ohashi, M., Wilson, J.M., andDjerassi, C. 1963. Mass spectra of isothiocyanates.Acta Chem. Scand. 17:2143–2154.Google Scholar
  30. Kondo, H., Kawaguchi, T., Naoshima, Y., andNozaki, H. 1985. Changes in volatile components of rape seeds (Brassica napus L.) during germination.Agric. Biol. Chem. 49:217–219.Google Scholar
  31. Kozlowski, M.W. 1984. Selective responsiveness of the antennal olfactory system in the cabbage seed weevil,Ceutorhyncus assimilis towards host plant volatiles.Acta Physiol. Pol. 35:577–579.Google Scholar
  32. Lamb, R.J. 1989. Entomology of oilseed Brassica crops.Annu. Rev. Entomol. 34:211–229.Google Scholar
  33. Light, D.M., Jang, E.B., andDickens, J.C. 1988. Electroantennogram responses of the mediterranean fruit fly,Ceratitis capitata, to a spectrum of plant volatiles.J. Chem. Ecol. 14:159–180.Google Scholar
  34. Liu, S.-H., Norris, D., andLyne, P. 1989. Volatiles from the foliage of soybean,Glycine max, and lima bean,Phaseolus lunatus: Their behavioural effects on the insectsTricoplusia ni andEpilachna varivestis.J. Agric. Food Chem. 37:496–501.Google Scholar
  35. Lugemwa, F.N., Lwande, W., Bentley, M.D., Mendel, M.J., andAlford, A.R. 1989. Volatiles of wild blueberry,Vaccinium angustifolium: Possible attractants for the blueberry maggot fly,Rhagoletis mendax.J. Agric. Food Chem. 37:232–233.Google Scholar
  36. MacLeod, G. andMacLeod, A.J. 1990. The glucosinolates and aroma volatiles of green Kohlrabi.Phytochemistry 29:1183–1187.Google Scholar
  37. Murray, K.E. 1969.α-Farnesene: Isolation from the natural coating of apples.Aust. J. Chem. 22:197–204.Google Scholar
  38. Snedecor, G.W. 1956. Statistical Methods. Applied to Experiments in Agriculture and Biology, 5th edition.Google Scholar
  39. Sokal, R.R., andRohlf, F.J. 1981. Biometry. The Principles and Practice of Statistics in Biological Research, 2nd ed. Freeman, San Francisco.Google Scholar
  40. Spencer, G.F., andDaxenbichler, M.E. 1980. Gas chromatography-mass spectrometry of nitrites, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates.J. Sci. Food Agric. 31:359–367.Google Scholar
  41. Sylvester-Bradley, R., andMakepeace, R.J. 1984 A. code for stages of development in oilseed rape (Brassica napus L.). Agronomy, physiology, plant breeding and crop protection of oilseed rape.Aspects Appl. Biol. 6:399–419.Google Scholar
  42. Tollsten, L., andBergstrÖm, G. 1988. Headspace volatiles of whole plants and macerated plant parts ofBrassica andSinapis.Phylochemistry 27:2073–2077.Google Scholar
  43. Tommerås, B.Å., andMustaparta, H. 1987. Chemoreception of host volatiles in the bark beetleIps typographies.J. Comp. Physiol. 161:705–710.Google Scholar
  44. Uda, Y., Ozawa, Y., andMaeda, Y. 1982. Volatile hydrolysis products of glucosinolates occurring in leaves and seeds from two varieties of artificialBrassica napus.Agric. Biol. Chem. 46:3097–3099.Google Scholar
  45. Van Der Pers, J.N.C. 1981. Comparison of electroantennogram response spectra to plant volatiles in seven species ofYponomeuta and in the tortricidAdoxophyes orana.Entomol. Exp. Appl. 30:181–192.Google Scholar
  46. Vanhaelen, M., Vanhaelen-Fastre, R., andGeeraerts, J. 1977. Isolation and characterisation of trace amounts of volatile compounds affecting insect chemosensory behaviour by combined pre-concentration on Tenax GC and gas chromatography.J. Chromatogr. 144:108–112.Google Scholar
  47. Visser, J.H. 1979. Electroantennogram responses of the Colorado beetle,Leptinotarsa decemlineata, to plant volatiles.Entomol. Exp. Appl. 25:86–97.Google Scholar
  48. Visser, J.H., andDe Jong, R. 1988. Olfactory coding in the perception of semiochemicals.J. Chem. Ecol. 14:2005–2018.Google Scholar
  49. Visser, J.H., Van Straten, S., andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:13–25.Google Scholar
  50. Wallbank, B.E., andWheatley, G.A. 1976. Volatile constituents from cauliflower and other crucifers.Phytochemistry 15:763–766.Google Scholar
  51. Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • K. A. Evans
    • 1
  • L. J. Allen-Williams
    • 2
  1. 1.Scottish Agricultural CollegeEdinburghScotland
  2. 2.Division of Environmental SciencesHatfield PolytechnicHatfieldEngland

Personalised recommendations