, Volume 45, Issue 3, pp 223–241 | Cite as

Response of secondary vegetation in Eastern Amazonia to relaxed nutrient availability constraints

  • Christoph Gehring
  • Manfred Denich
  • Milton Kanashiro
  • Paul L. G. Vlek


This study evaluated the effect of nutrient application on the regrowth dynamics of secondary fallow vegetation in an intensely exploited shifting cultivation area in the eastern Amazon region of Brazil. The importance of N, P, K, Ca, Mg, S and a mixture of micronutrients was tested in a minus-one-trial by comparison with a full complement of nutrients and unfertilized control plots. Fertilizers were applied three times during the experiment and their effects were monitored over a period of 2 1/2 years. Prior to the second fertilization, one third of each experimental plot was cleared of the vegetation cover and planted in maize, prior to the third fertilizer application these subplots were planted in sorghum. Biomass of maize and sorghum were used to indicate nutrient constraints and fertilizing effects due to the different treatments. Both crops were limited by P- and N-availability, with greater responses to P. The initial fertilization did not affect the biomass accumulation of the secondary vegetation during the first 15 months, but two additional applications significantly increased biomass in the complete fertilizer treatment compared to the unfertilized control. Biomass accumulation was primarily P-limited, N-limitation was apparent but not significant. The remaining nutrients did not affect plant growth. Fertilization favored production of nutrient-rich leaves. Application of readily available nutrients gave grasses a competitive edge over slower reacting woody vegetation. Fertilization also caused significant shifts in the contribution of woody species to biomass accumulation, as could be demonstrated for two prominent pioneer tree species. Growth response to fertilization as well as the primary limiting nutrient varied among seven dominant species monitored in the secondary vegetation. We conclude that growth of tropical secondary vegetation can be nutrient limited and it might respond significantly to additional nutrients by increasing biomass production.

Key words

biomass fallow vegetation fertilization minus-one-trial regeneration succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton PS (1977) A contribution of rain forest research to evolutionary theory. Ann. Miss. Bot. Garden 64: 694–705Google Scholar
  2. Baar R (1997) Vegetationskundliche und — ökologische Untersuchungen der Buschbrache in der Feldumlagewirtschaft im östlichen Amazonasgebiet. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 121: 1–202Google Scholar
  3. Buschbacher R, Uhl C & Serrão EAS (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks. J. Ecol. 76: 682–699Google Scholar
  4. Chapin FS (1980) The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260Google Scholar
  5. Clausing G (1994) Frühe Regeneration und Wiederbesiedlung auf Kulturflächen der Wald-Feld-Wechselwirtschaft im östlichen Amazonasgebiet. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 97: 1–151Google Scholar
  6. Clinebell RR, Phillips OL, Gentry AH, Stark N & Zuurig H (1995) Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation 4: 56–90Google Scholar
  7. Cole CV & Heil RD (1981) Phosphorus effects on terrestrial nitrogen cycling. Ecological Bulletins (Stockholm) 33: 363–374Google Scholar
  8. Denich M (1989) Untersuchungen zur Bedeutung junger Sekundärvegetation für die Nutzungssystemproduktivität im östlichen Amazonasgebiet, Brasilien. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 46: 1–265Google Scholar
  9. Denich M, Kanashiro M & Vlek PLG (in press) The potential and dynamics of carbon sequestration in traditional and modified fallow systems of the Eastern Amazon region, Brazil. Advances in Soil ScienceGoogle Scholar
  10. DiTommaso A & Aarsen LW (1989) Resource manipulations in natural vegetation: a review. Vegetatio 84: 9–29Google Scholar
  11. Driessche R van den (1974) Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. 40: 347–394Google Scholar
  12. EMBRAPA (1979) Manual de Métodos de Análisis do Solo. SLNCS, Rio de JaneiroGoogle Scholar
  13. Ewel JJ (1986) Designing agricultural ecosystems for the humid tropics. Ann. Rev. Ecol. Syst. 17: 245–271Google Scholar
  14. Ewel JJ, Mazzarino MJ & Berish CW (1991) Tropical soil fertility changes under monocultures and successional communities of different structure. Ecol. Appl. 1: 289–302Google Scholar
  15. Gartlan JS, Newbery DM, Thomas DW & Waterman PG (1986) The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroon. Vegetatio 65: 131–148Google Scholar
  16. Harcombe PA (1977) The influence of fertilization on some aspects of succession in a humid tropical forest. Ecology 58: 1375–1383Google Scholar
  17. Harcombe PA (1980) Soil nutrient loss as a factor in early tropical secondary succession. Biotropica 12: 8–15Google Scholar
  18. Hartley SE & Jones CG (1997) Plant chemistry and herbivory, or Why the world is green. In: Crawley MJ (Ed) Plant Ecology (pp 284–324). Blackwell Science Ltd., OxfordGoogle Scholar
  19. Herbert DA & Fownes JH (1995) Phosphorus limitation of forest leaf area and net primary production on a weathered tropical montane soil. Biogeochemistry 29: 223–235Google Scholar
  20. Bodenentwicklung und Beziehungen zwischen Standortfaktoren und Holzzuwachs in Sekundärwäldern Costa Ricas — Geoökologische Untersuchungen auf nährstoffarmen Substraten in der nördlichen Tiefebene bei Boca Tapada. Diploma thesis, University of BayreuthGoogle Scholar
  21. Hölscher D, Möller RF, Denich M & Fölster H (1997) Nutrient input-output budget of shifting agriculture in Eastern Amazonia. Nutrient Cycling in Agroecosystems 47: 49–57Google Scholar
  22. Huston MA (1994) Biological Diversity. The Coexistence of Species on Changing Landscapes. Cambridge University Press, CambridgeGoogle Scholar
  23. IBGE (1957) Encyclopédia dos Municipíos Brasileiros 1950, vol. XIVGoogle Scholar
  24. Jacobi I (1997) Der Beitrag von Keimlingen zur Regeneration der Brachevegetation im östlichen Amazonasgebiet. PhD Thesis, University of Hamburg, GermanyGoogle Scholar
  25. Jordan CF (1985) Nutrient Cycling in Tropical Forest Ecosystems — Principles and Their Application in Management and Conservation. John Wiley & Sons, Chichester.Google Scholar
  26. Kellman M (1969) Some environmental components of shifting cultivation in upland Mindanao. J. Trop. Geogr. 28: 40–56Google Scholar
  27. Kellman M (1980) Geographic patterning in tropical weed communities and early tropical succession. Biotropica 12: 34–39Google Scholar
  28. Mead R, Curnow RN & Hasted AM (1993) Statistical Methods in Agriculture and Experimental Biology. Chapman & Hall, London.Google Scholar
  29. Mouat MCH (1983) Competitive adaptation by plants to nutrient shortage through modification of root growth and surface charge. NZ. J. Agr. Res. 26: 327–332Google Scholar
  30. Nunez JBH (1995) Fitomassa e estoque de bioelementos das diversas fases da vegetação secundária, provenientes de diferentes sistemas de uso da terra no nordeste paraense, Brasil. Master thesis, Federal University of Pará, Belém, BrazilGoogle Scholar
  31. Peace WJH & Grubb PJ (1982) Interaction of light and mineral nutrient supply in the growth ofImpatiens parviflora. New Phytologist 90: 127–150Google Scholar
  32. Raich JW, Russell AE, Crews TE Farrington H & Vitousek PM (1996) Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry 32: 1–14Google Scholar
  33. Raison RJ, Khanna PK & Woods PV (1985) Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 15: 132–140Google Scholar
  34. Ramakrishnan PS (1988) Successional theory: Implications for weed management in shifting agriculture, mixed cropping and agroforestry systems. In: Altieri MA & Liebman M (Eds) Weed Management in Agroecosystems (pp 183–196). CRC Press, Boca Raton, FloridaGoogle Scholar
  35. Rego RS, Silva BNR & Raimundo SO (1993) Detailed soil survey in an area in the municipality of Igarapé Açu, Pará. In: Junk WJ & Bianchi H (Eds) Summaries of Lectures and Posters Presented at the 1st SHIFT-Workshop in Belém (Brazil), March 8–13. CNPq, IBAMA, BMFT, Geesthacht, GermanyGoogle Scholar
  36. Schulze ED & Chapin FS (1987) Plant specialization to environments of different resource availability. In: Schulze ED & Zwölfer H (Eds) Potentials and Limitations of Ecosystem Analysis (pp 120–148). Springer, New YorkGoogle Scholar
  37. Swaine MD (1996) Rainfall and soil fertility as factors limiting forest species distributions in Ghana. J. Ecol. 84: 419–428Google Scholar
  38. Tanner EVJ, Kapos V, Freskos S, Healey JR & Theobald AM (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J. Trop. Ecol. 6: 231–238Google Scholar
  39. Tanner EVJ, Kapos V & Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73: 78–86Google Scholar
  40. Uhl C (1987) Factors controlling succession following slash-and-burn agriculture in Amazonia. J. Ecol. 75: 377–07Google Scholar
  41. Uhl C, Clark K, Clark H & Murphy P (1981) Early plant succession after cutting and burning in the upper Rio Negro region of the Amazon basin. J. Ecol. 69: 631–640Google Scholar
  42. Unruh JD (1988) Ecological aspects of site recovery under swidden-fallow management in the Peruvian Amazon. Agroforestry Systems 7: 161–184Google Scholar
  43. Vitousek PM, Gerrish G, Turner DR, Walker LR & Mueller-Dombois D (1995) Litterfall and nutrient cycling in four Hawaiian montane rainforests. J. Trop. Ecol. 11: 189–203Google Scholar
  44. Vogt R (1994) Bodenentwicklung und Beziehungen zwischen Standortfaktoren und Holzzuwachs in Sekundärwäldern Costa Ricas — Geoökologische Untersuchungen auf nährstoffreichen vulkanischen Substraten in der Region Guatuso. Diploma thesis. University of BayreuthGoogle Scholar
  45. Walker LR & Aplet GH (1994) Growth and fertilization responses of Hawaiian tree ferns. Biotropica 26: 378–383Google Scholar
  46. Walker TW & Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15: 1–19Google Scholar
  47. Watrin OS (1994) Estudo da dinâmica na paisagem da Amazônia oriental através de técnicas de geoprocessamento. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos-SPGoogle Scholar
  48. Weetman GF & Wells CG (1990) Plant analysis as an aid in fertilizing forests. In: Westerman RL (Ed): Soil Testing and Plant Analysis (pp 659–685). Soil Science Society of America, Madison, WisconsinGoogle Scholar
  49. Bedeutung des Wurzelsystems für die Regeneration der Brachevegetation in Nordost-Brasilien. In: Ernährungssicherung — Symposium December 14–15 1995 in Göttingen (pp 358–362). Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 115Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Christoph Gehring
    • 1
  • Manfred Denich
    • 1
  • Milton Kanashiro
    • 2
  • Paul L. G. Vlek
    • 1
  1. 1.Institute of Agriculture in the TropicsUniversity of GöttingenGöttingenGermany
  2. 2.EMBRAPA Amazônia OrientalBelém-PABrazil

Personalised recommendations