Journal of Chemical Ecology

, Volume 19, Issue 5, pp 919–937 | Cite as

Oviposition stimulants for the black swallowtail butterfly: Identification of electrophysiologically active compounds in carrot volatiles

  • Robert Baur
  • Paul Feeny
  • Erich Städler


Headspace volatiles were collected from undamaged foliage of carrot,Daucus carota, a host-plant species of the black swallowtail butterfly,Papilio polyxenes. The volatiles were fractionated over silica on an open column, and the fractions were tested in behavioral assays withP. polyxenes females in laboratory experiments. The polar fractions, as well as the total mixture of volatiles, increased the landing frequency and the number of eggs laid on model plants with leaves bearing contact-oviposition stimulants. The nonpolar fraction, containing the most abundant compounds in carrot odor, was not stimulatory. Gas Chromatographic (GC) separation of the fractions was coupled with electroantennogram (EAG) recordings to identify the compounds perceived byP. polyxenes females. The EAG activity corresponded to the behavioral activity of the fractions. None of the nonpolar compounds, identified as various monoterpenes, evoked a major EAG response, but several constituents of the polar fractions elicited high EAG responses. Sabinene hydrate (both stereoisomers), 4-terpineol, bomyl acetate, and (Z)-3-hexenyl acetate were identified by GC-MS as active compounds.

Key Words

Papilio polyxenes Papilionidae Lepidoptera Daucus carota Apiaceae host-plant selection oviposition behavior electroantennogram combined GC-EAG plant volatiles sabinene hydrate 4-terpineol bomyl acetate (Z)-3-hexenyl acetate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergström, G., Appelgren, M., Borg-Karlson, A.-K., Groth, I., Strömberg, S. andStrömberg, S. 1980. Studies on natural odoriferous compounds (XXII): Techniques for the isolation/enrichment of plant volatiles in the analysis ofOphris orchids (Orchidaceae).Chem. Scr. 16:173–180.Google Scholar
  2. Blau, W.S. 1981. Life history variation in the black swallowtail butterfly.Oecologia 48:116–122.Google Scholar
  3. Buttery, R.G., Seifert, R.M., Guadagni, D.G., Black, D.R. andLing, L.C. 1968. Characterization of some volatile constituents of carrots.J. Agric. Food Chem. 16:1009–1015.Google Scholar
  4. Clark, L.G. andDennehy, T.J. 1988. Host-finding and oviposition behavior of grape berry moth.Entomol. Exp. Appl. 47:223–230.Google Scholar
  5. Cronin, D.A. andStanton, P. 1976. 2-Methoxy-3-sec-butylpyrazine-an important contributor to carrot aroma.Sci. Food Agric. 27:145–151.Google Scholar
  6. Davies, N.W. 1990. Gas Chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases.J. Chromatogr. 503:1–24.Google Scholar
  7. Dobson, H.E.M. 1991. Analysis of flower and pollen volatiles, pp. 231–251,in H.F. Linskens and J.F. Jackson (eds.). Modern Methods of Plant Analysis. New Series, Volume 12, Essential Oils and Waxes. Springer-Verlag, Berlin.Google Scholar
  8. Douwes, P. 1968. Host selection and host finding in the egg-laying female ofCidaria albulata L. (Lep. Geometridae).Opusc. Entomol. 33:233–279.Google Scholar
  9. Feeny, P., Rosenberry, L. andCarter, M. 1983. Chemical aspects of oviposition behavior in butterflies, pp. 27–76,in S. Ahmad (ed.) Herbivorous Insects. Academic Press, New York.Google Scholar
  10. Feeny, P., Sachdev, K., Rosenberry, L. andCarter, M. 1988. Luteolin 7-O-(6″-O-malonyl)-β-D-glucoside and (trans-chlorogenic acid: oviposition stimulants for the black swallowtail butterfly.Phytochemistry 27:3439–3448.Google Scholar
  11. Feeny, P., Städler, E., Åhman, I. andCarter, M. 1989. Effects of plant odor on oviposition by the black swallowtail butterfly,Papilio polyxenes (Lepidoptera: Papilionidae).J. Insect Behav. 2:803–827.Google Scholar
  12. Formacek, V. andKubeczka, K.-H. 1982. Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR Spectroscopy. John Wiley & Sons, New York.Google Scholar
  13. Guerin, P.M. andVisser, J.H. 1980. Electroantennogram responses of the carrot fly,Psila rosae, to volatile plant components.Physiol. Entomol. 5:111–119.Google Scholar
  14. Guerin, P.M., Städler, E. andBuser, H.-R. 1983. Identification of host plant attractants for the carrot fly,Psila rosae.J. Chem. Ecol. 9:843–861.Google Scholar
  15. Hamilton-Kemp, T.R., Andersen, R.A., Rodriguez, J.G., Loughrin, J.H. andPatterson, C.G. 1988. Strawberry foliage headspace vapor components at periods of susceptibility and resistance toTetranychus urticae Koch.J. Chem. Ecol. 14:789–796.Google Scholar
  16. Hansson, B.S., Van Der Pers, J.N.C. andLöfqvist, J. 1989. Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth,Agrotis segetum.Physiol. Entomol. 14:147–155.Google Scholar
  17. Landolt, P.J. 1989. Attraction of the cabbage looper to host plants and host plant odour in the laboratory.Entomol. Exp. Appl. 53:117–124.Google Scholar
  18. Leather, S.R. 1987. Pine monoterpenes stimulate oviposition in the pine beauty moth,Panolis flammea.Entomol. Exp. Appl. 43:295–303.Google Scholar
  19. Ma, W.-C., andSchoonhoven, L.M. 1973. Tarsal contact chemosensory hairs of the large white butterfly,Pieris brassicae and their possible role in oviposition behavior.Entomol. Exp. Appl. 16:343–357.Google Scholar
  20. Masada, Y. 1976. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry. John Wiley & Sons, New York.Google Scholar
  21. McLafferty, F.W. andStauffer, D.B. 1989. The Wiley/NSB Registry of Mass Spectral Data. John Wiley & Sons, New York.Google Scholar
  22. Nishida, R. andFukami, H. 1989. Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous.J. Chem. Ecol. 15:2565–2575.Google Scholar
  23. Nishida, R., Ohsugi, T., Kokubo, S. andFukami, H. 1987. Oviposition stimulants of citrusfeeding swallowtail butterfly,Papilio xuthus L.Experientia 43:342–344.Google Scholar
  24. Palaniswamy, P., Gillott, C., andSlater, G.P. 1986. Attraction of diamondback moths,Plutella xylostella (L.) (Lepidoptera: Plutellidae), by volatile compounds of canola, white mustard, and faba bean.Can. Entomol. 118:1279–1285.Google Scholar
  25. Papaj, D.R. 1986. Conditioning of leaf-shape discrimination by chemical cues in the butterfly,Battus philenor.Anim. Behav. 34:1281–1288.Google Scholar
  26. Phelan, P.L., Roelofs, C.J., Youngman, R.R. andBaker, T.C. 1991. Characterization of chemicals mediating ovipositional host-plant finding byAmyelois transitella females.J. Chem. Ecol. 17:599–613.Google Scholar
  27. Ramaswamy, S.B. 1988. Host finding by moths: Sensory modalities and behaviours.J. Insect Physiol. 34:235–249.Google Scholar
  28. Rausher, M.D. 1978. Search image for leaf shape in a butterfly.Science 200:1071–1073.Google Scholar
  29. Reed, D.K., Mikolajczak, K.L. andKrause, C.R. 1988. Ovipositional behavior of lesser peachtree borer in presence of host-plant volatiles.J. Chem. Ecol. 14:237–252.Google Scholar
  30. Renwick, J.A.A. andRadke, C.D. 1987. Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies.J. Chem. Ecol. 13:1771–1775.Google Scholar
  31. Saxena, K.N. andGoyal, S. 1978. Host-plant relations of the Citrus butterflyPapilo demoleus L.: Orientational and ovipositional responses.Entomol. Exp. Appl. 24:1–10.Google Scholar
  32. Simon, P.W., Lindsay, R.C. andPeterson, C.E. 1980. Analysis of carrot volatiles collected on polymer traps.J. Agric. Food Chem. 28:549–552.Google Scholar
  33. Southwell, I.A. andStiff, I.A. 1989. Ontogenetical changes in monoterpenoids ofMelaleuca alternifolia leaf.Phytochemistry 28:1047–1051.Google Scholar
  34. Städler, E. 1974. Host plant stimuli affecting oviposition behavior of the eastern spruce budworm.Entomol. Exp. Appl. 17:176–188.Google Scholar
  35. Städler, E. 1984. Contact chemoreception, pp. 3–35,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman & Hall, London.Google Scholar
  36. Städler, E. 1992. Behavioral responses of insects to plant secondary compounds, pp. 45–88,in M.R. Berenbaum and G.A. Rosenthal (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  37. Städler, E. andBuser, H.-R. 1984. Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect.Experientia 40:1157–1159.Google Scholar
  38. Tollsten, L. andBergström, G. 1988. Headspace volatiles of whole plants and macerated plant parts ofBrassica andSinapis.Phytochemistry 27:4013–4018.Google Scholar
  39. Vaidya, V.G. 1969. Investigations on the role of visual stimuli in the egg-laying and resting behaviour ofPapilio demoleus L. (Papilionidae, Lepidoptere).Anim. Behav. 17:350–355.Google Scholar
  40. Varo, P.T. andHeinz, D.E. 1970. Volatile components of cumin seed oil.J. Agric. Food Chem. 18:234–238.Google Scholar
  41. Visser, J.H. 1986. Host odour perception in phytophagous insects.Annu. Rev. Entomol. 31:121–144.Google Scholar
  42. Wallbank, B.E. andWheatley, G.A. 1976. Volatile constituents from cauliflower and other crucifers.Phytochemistry 15:763–766.Google Scholar
  43. Whitman, D.W. andEller, F.J. 1990. Parasitic wasps orient to green leaf volatiles.Chemoecology 1:69–75.Google Scholar
  44. Wiklund, C. 1984. Egg-laying patterns in butterflies in relation to their phenology and visual apparency and abundance of their host plants.Oecologia 63:23–29.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Robert Baur
    • 1
  • Paul Feeny
    • 1
  • Erich Städler
    • 1
  1. 1.Section of Ecology and Systematics Corson HallCornell University IthacaNew York

Personalised recommendations