Advertisement

Neurochemical Research

, Volume 20, Issue 11, pp 1329–1333 | Cite as

Neural membrane phospholipids in alzheimer disease

  • Kimberly Wells
  • Akhlaq A. Farooqui
  • Leopold Liss
  • Lloyd A. Horrocks
Original Articles

Abstract

Phospholipids form the backbone of neural membranes, providing fluidity and permeability. Two plasma membrane fractions, one from synaptosomes (SPM), the other glial and neuronal cell bodies (PM), were prepared from different regions of autopsied Alzheimer disease (AD) brains. Corresponding fractions were prepared from age-matched control brains. All fractions from AD brains showed significantly lower levels of ethanolamine glycerophospholipids and significantly higher levels of serine glycerophospholipids than the control brain. No differences were observed in phosphatidylcholine levels among these membranes. These results suggest that altered phospholipid composition of plasma membranes may be involved in the abnormal signal transduction and neurodegeneration in AD.

Key Words

Phospholipids plasma membrane signal transduction neurodegeneration Alzheimer disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svennerholm, L., and Gottfries, C. G. 1994. Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J. Neurochem. 62:1039–1047.Google Scholar
  2. 2.
    Crutcher, K. A., Anderton, B. H., Barger, S. W., Ohm, T. G., and Snow, A. D. 1993. Cellular and molecular pathology in Alzheimer's disease. Hippocampus 3:271–288.Google Scholar
  3. 3.
    Farooqui, A. A., Liss, L., and Horrocks, L. A. 1988. Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metabolic Brain Dis. 3:19–35.Google Scholar
  4. 4.
    Katzman, R., and Saitoh, T. 1991. Advances in Alzheimer's disease. FASEB J. 5:278–286.Google Scholar
  5. 5.
    Farooqui, A. A., and Horrocks, L. A. 1985. Metabolic and functional aspects of neural membrane phospholipids. Pages 341–348, in Horrocks, L. A., Kanfer, J. N., and Porcellati, G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. New York: Raven Press.Google Scholar
  6. 6.
    Farooqui, A. A., and Horrocks, L. A. 1991. Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.Google Scholar
  7. 7.
    Nitsch, R., Pittas, A., Blusztajn, J. K., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1991. Alterations of phospholipid metabolites in postmortem brain from patients with Alzheimer's disease. Ann. NY Acad. Sci. 640:110–113.Google Scholar
  8. 8.
    Bothmer, J., and Jolles, J. 1994. Phosphoinositide metabolism, aging and Alzheimer's disease. Biochim. Biophys. Acta 1225:111–124.Google Scholar
  9. 9.
    Farooqui, A. A., and Horrocks, L. A. 1994. Involvement of glutamate receptors, lipases and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.Google Scholar
  10. 10.
    Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D'Amato, R. A., and Krakowka, S. 1978. Plasmalogenase is elevated in early demyelinating lesions. Adv. Exp. Med. Biol. 100:423–438.Google Scholar
  11. 11.
    Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membran defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA. 89:1671–1675.Google Scholar
  12. 12.
    Stokes, C. E., and Hawthorne, J. N. 1987. Reduced phosphoinositide concentration in anterior temporal cortex of Alzheimer's diseased brains. J. Neurochem. 48:1018–1021.Google Scholar
  13. 13.
    Jellinger, K., Kienzl, E., Puchinger, L., and Stachelberger, H. 1993. Changes of phospholipids in Alzheimer's disease bram. Pages 315–323, in Corain, B., Iqbal, K., Nicolini, M., Winblad, B., Wisniewski, H., and Zatta, P. (eds.), Alzheimer's Disease: Advances in Clinical and Basic Research. Chichester: John Wiley & Sons Ltd.Google Scholar
  14. 14.
    Kienzl, E., Puchinger, L., Jellinger, K., Stachelberger, H., and Varmuza, K. 1993. Studies of phospholipid composition in Alzheimer's disease brain. Neurodegeneration 2:101–109.Google Scholar
  15. 15.
    Barany, M., Chang, Y. C., Arus, C., Rustan, T., and Frey, W. H. 1985. Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain [letter]. Lencet 1:517.Google Scholar
  16. 16.
    Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988.31P Nuclear magnetic resonance study of the brain in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 47: 235–248.Google Scholar
  17. 17.
    Pettegrew, J. W., Panchalingam, K., Moosy, J., Martinez, J., Rao, G., and Boller, F. 1988. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphology finding in Alzheimer's disease. Arch. Neurol. 45:1093–1096.Google Scholar
  18. 18.
    Pettegrew, J. W. 1989. Molecular insights into Alzheimer disease. Ann. NY Acad. Sci. 568:5–28.Google Scholar
  19. 19.
    Ellison, D. W., Beal, M. F., and Martin, J. B. 1987. Phosphoethanolamine and ethanolamine are decreased in Alzheimer's disease and Humtington's disease. Brain Res. 417:389–392.Google Scholar
  20. 20.
    Iwamoto, N., Kobayashi, K., and Kosaka, K. 1989. The formation of prostaglandins in the postmortem cerebral cortex of Alzheimertype dementia patients. J. Neurol. 236:80–84.Google Scholar
  21. 21.
    Subbarao, K. V., Richardson, J. S., and Ang, L. C. 1990. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.Google Scholar
  22. 22.
    Zubenko, G. S. 1986. Hippocampal membrane alteration in Alzheimer's disease. Brain Res. 385:115–211.Google Scholar
  23. 23.
    Ginsberg, L., Atack, J. R., Rapoport, S. I., and Gershfeld, N. L. 1993. Evidence for a membrane lipid defect in Alzheimer disease. Mol. Chem. Neuropathol. 19:37–46.Google Scholar
  24. 24.
    Ginsberg, L., Atack, J. R., Rapoport, S. I., and Gershfeld, N. L. 1993. Regional specificity of membrane instability in Alzheimer's disease brain. Brain Res. 615:355–357.Google Scholar
  25. 25.
    Bondareff, W. 1987. Changes in the brain in aging and Alzheimer's disease. Assessed by neuronal counts. Neurobiol. Aging. 8: 562–563.Google Scholar
  26. 26.
    Khachaturian, Z. S. 1985. Diagnosis of Alzheimer's disease. Arch. Neurol. 42:1097–1105.Google Scholar
  27. 27.
    Wisniewski, H. M., Rabe, A., Zigman, J., and Silverman, W. 1989. Neuropathological diagnosis of Alzheimer Disease. J. Neuropathol. Exp. Neurol. 48:606–609.Google Scholar
  28. 28.
    Strosznajder, J., Wikiel, H., Kelleher, J. A., and Sun, G. Y. 1986. Diacylglycerol kinase and lipase activities in rat brain subcellular fractions. Neurochem. Int. 8:213–221.Google Scholar
  29. 29.
    Farooqui, A. A., Liss, L., and Horrocks, L. A. 1990. Elevated activities of lipases and lysophospholipases in Alzheimer's disease. Dementia 1:208–214.Google Scholar
  30. 30.
    Dugan, L. L., Demediuk, P., Pendley, C. E., II, and Horrocks, L. A. 1986. Separation of phospholipids by HPLC: All major classes, including ethanolamine and choline plasmalogens, and most minor classes, including lysophosphatidylethanolamine. J. Chromatog. 378:317–327.Google Scholar
  31. 31.
    Rouser, G., Fleischer, S., and Yamamoto, A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496.Google Scholar
  32. 32.
    Farooqui, A. A., Farooqui, T., Yates, A. J., and Horrocks, L. A. 1988. Regulation of protein kinase C activity by various lipids. Neurochem. Res. 13:499–511.Google Scholar
  33. 33.
    Cole, G., Dobkins, K. R., Hansen, L. A., Terry, R. D., and Saitoh, T. 1988. Decreased levels of protein kinase C in Alzheimer brain. Brain Res. 452:165–170.Google Scholar
  34. 34.
    Allain, H., Belliard, S., De Certaines, J., Bentué-Ferrer, D., Bureau, M., and Lacroix, P. 1993. Potential biological targets for anti-Alzheimer drugs. Dementia 4:347–352.Google Scholar
  35. 35.
    Farooqui, A. A., Liss, L., and Horrocks, L. A. 1988. Stimulation of lipolytic enzymes in Alzheimer's disease. Ann. Neurol. 23:306–308.Google Scholar
  36. 36.
    Porcellati, G. 1983. Phospholipid metabolism in neural membranes. Pages 3–35,in Sun, G. Y., Bazan, N., Wu, J. Y., Porcellati, G., and Sun, A. Y. (eds.), Neural Membranes. New York: Humana Press.Google Scholar
  37. 37.
    Mozzi, R., and Horrocks, L. A. 1992. Serine incorporation into phosphatidylserine in hypoxic rat brain cortex. Mol. Chem. Neuropathol. 17:183–188.Google Scholar
  38. 38.
    Mozzi, R., Andreoli, V., and Horrocks, L. A. 1993. Phosphatidylserine synthesis in rat cerebral cortex: effects of hypoxia, hypocapnia and development. Mol. Cell. Biochem. 126:101–107.Google Scholar
  39. 39.
    Crook, T. H., Tinklenberg, J., Yesavage, J., Petrie, W., Nunzi, M. G., and massari, D. C. 1991. Effects of phosphatidylserine in ageassociated memory impairment. Neurology 41:644–649.Google Scholar
  40. 40.
    Amaducci, L., and Denes, F. 1989. Phosphatidylserine in the treatment of Alzheimer's disease: Results of a multicenter study. Pages 251–260,in Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.), Phospholipids in the Nervous System: Biochemical and Molecular Pathology. Padova: Liviana Press.Google Scholar
  41. 41.
    Delwaide, P. J., Maertens de Noordhout, A., de Pasqua, V., Ylieff, M., Gyselinck-Mambourg, A. M., and Hurlet, A. 1989. Effects of phosphatidylserine (BC-PS) on aged brain in normal subjects and senile demented patients. Pages 261–268,in Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.), Phospholipids in the Nervous System: Biochemical and Molecular Pathology, Padova: Liviana Press.Google Scholar
  42. 42.
    Casamenti, F., Mantovani, P., Amaducci, L., and Pepeu, G. 1979. Effect of phosphatidylserine on acetylcholine output from the cerebral cortex of the rat. J. Neurochem. 32:529–533.Google Scholar
  43. 43.
    Mazzari, S., and Battistella, A. 1980. Phosphatidylserine effects of dopamine release from striatum synaptosomes. Pages 569–570,in di Benedetta, C., Balåzs, R., Gombos, G., and Porcellati, G. (eds.), Multidisciplinary Approach to brain Development. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
  44. 44.
    Cohen, S. A., and Müller, W. E. 1992. Age-related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Res. 584: 174–180.Google Scholar
  45. 45.
    Giusto, N. M., and Bazan, N. G. 1973. High increment of triglycerols with ether linkages in the retina during anoxia. Biochem. Biophys. Res. Commun. 55:515–521.Google Scholar
  46. 46.
    Hoyer, S. 1992. Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol. Chem. Neuropathol. 16:207–224.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Kimberly Wells
    • 1
  • Akhlaq A. Farooqui
    • 1
  • Leopold Liss
    • 2
  • Lloyd A. Horrocks
    • 1
  1. 1.Department of Medical BiochemistryThe Ohio State UniversityColumbus
  2. 2.Department of Pathology College of MedicineThe Ohio State UniversityColumbus

Personalised recommendations