Motivation and Emotion

, Volume 14, Issue 2, pp 81–91 | Cite as

The neural basis of primate social communication

  • Leslie Brothers


A sophisticated ability both to generate displays of emotion and to respond to expressive behaviors of other individuals has emerged as a specialization in the course of primate evolution. Studies of the social behavior of nonhuman primates, especially those most related to ourselves, indicate that monkeys and apes are able to interpret social signals so as to assess the motivations of others. Studies of brain activity in monkeys looking at pictures of faces, facial expressions, and body movements, reveal regions of apparent specialized responsiveness to visual social stimuli. The existence of a discrete neural system in humans for cognition which generates a psychological model of others is suggested by patterns of deficit seen in certain neurologic syndromes. Empathy has several components and appears to lie on an evolutionary continuum.


Social Psychology Facial Expression Social Behavior Brain Activity Body Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J. (1982). Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In E. Armstrong & D. Falk (Eds.),Primate brain evolution: Methods and concepts. New York: Plenum Press.Google Scholar
  2. Ardila, A. & Rosseli, M. (1988). Temporal lobe involvement in Capgras syndrome.International Journal of Neuroscience, 43, 219–224.Google Scholar
  3. Attwood, A., Frith, U., & Hermelin, B. (1988). The understanding and use of interpersonal gestures by autistic and Down's syndrome children.Journal of Autism and Developmental Disorders, 18; 241–57.Google Scholar
  4. Bachevalier, J. (in press). Memory loss and socio-emotional disturbances following neonatal damage of the limbic system in monkeys: An animal model for childhood autism. In C. A. Tamminga & S. C. Schulz, (Eds.),Advances in neuropsychiatry and psychopharmacology. Vol. 1. Schizophrenia research (pp. 129–140). New York: Raven Press.Google Scholar
  5. Basch, M. F. (1983). Empathic understanding: A review of the concept and some theoretical considerations.Journal of the American Psychoanalytic Association, 31, 101–126.Google Scholar
  6. Bauman, M. L. & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism.Neurology, 35, 866–874.Google Scholar
  7. Baylis, G., Rolls, E. T., & Leonard, C. M. (1985). Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey.Brain Research, 342, 91–102.Google Scholar
  8. Bouckoms, A., Martuza, R., & Henderson, M. (1986). Capgras syndrome with subarachnoid hemorrhage.Journal of Nervous and Mental Disease, 174, 484–488.Google Scholar
  9. Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain.Concepts in Neuroscience, 1, 27–51.Google Scholar
  10. Brothers, L., Ring, B., & Kling, A. (1990). Response of neurons in the macaque amygdala to complex social stimuli.Behavioural Brain Research, 41, 199–213.Google Scholar
  11. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque.Journal of Neurophysiology, 46, 369–384.Google Scholar
  12. Byrne, R., & Whiten, A. (Eds.). (1988).Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford, England: Clarendon Press.Google Scholar
  13. Cheney, D. L. & Seyfarth, R. (1990).How monkeys see the world. Chicago: University of Chicago Press.Google Scholar
  14. Darwin, C. (1872).The expression of the emotions in man and animals (p. 12). New York: D. Appleton.Google Scholar
  15. DeWaal, F. (1989).Peacemaking among primates. Cambridge, MA: Harvard University Press.Google Scholar
  16. Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque.Journal of Neuroscience, 4, 2051–2062.Google Scholar
  17. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR.Neurology, 35, 1731–1741.Google Scholar
  18. Fishbain, D. A., & Rosomoff, H. (1986/1987). Capgras syndrome associated with metrizamide myelography.International Journal of Psychiatry in Medicine, 16, 131–136.Google Scholar
  19. Gloor, P. (1986). Role of the human limbic system in perception, memory, and affect: Lessons from temporal lobe epilepsy. In B. K. Doane & K. E. Livingston (Eds.),The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  20. Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). the role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey.Behavioural Brain Research, 32, 203–218.Google Scholar
  21. Hobson, R. P. (1986). The autistic child's appraisal of expressions of emotion.Journal of Child Psychology and Psychiatry, 27, 321–342.Google Scholar
  22. Humphrey, N. (1983).Consciousness regained. Oxford, England: Oxford University Press.Google Scholar
  23. Joseph, A. B. (1985). Bitemporal atrophy in a patient with Fregoli syndrome, syndrome of intermetamorphosis, and reduplicative paramnesia [letter to the editor].American Journal of Psychiatry, 142, 146–147.Google Scholar
  24. Kling, A., & Brothers, L. (1990). The amygdala and social behavior. In J. Aggleton (Ed.),The amygdala. New York: John Wiley and Sons.Google Scholar
  25. Kling, A., Lloyd, R., & Perryman, K. (1987). Slow-wave changes in amygdala to visual, auditory, and social stimuli following lesions of the inferior temporal cortex in squirrel monkey (Saimiri sciureus).Behavioural and Neural Biology, 47, 54–72.Google Scholar
  26. Kling, A., & Steklis, H. D. (1976). A neural substrate for affiliative behavior in nonhuman primates.Brain Behavior and Evolution, 13, 216–238.Google Scholar
  27. LeBon, G. (1903).The crowd. London: Fisher Unwin.Google Scholar
  28. Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of non-verbal communication measures.Journal of Child Psychology and Psychiatry, 27, 657–669.Google Scholar
  29. Perrett, D. I., Harries, M. H., Chitty, A. J., & Mistlin, A. J. (1990). Three stages in the classification of body movements by visual neurones. In H. B. Barlow, C. Blakemore, & M. Weston-Smith (Eds.),Images and Understanding, Cambridge, England: Cambridge University Press.Google Scholar
  30. Perrett, D. I., & Mistlin, A. J. (1990). Perception of facial characteristics by monkeys. In M. Berkeley & W. Stebbins (Eds.),Comparative perception. New York: John Wiley and Sons.Google Scholar
  31. Perrett, D. I., Mistlin, A. J., Harries, M. H., & Chitty, A. J. (1990). Understanding the visual appearance and consequence of hand actions. In M. A. Goodale (Ed.),Vision and action: The control of grasping. Norwood, NJ: Albex.Google Scholar
  32. Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurons responsive to faces in the monkey temporal cortex.Experimental Brain Research, 47, 329–342.Google Scholar
  33. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1984). Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception.Human Neurobiology, 3, 197–208.Google Scholar
  34. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction.Proceedings of the Royal Society of London B, 223, 293–317.Google Scholar
  35. Premack, D. ‘Does the chimpanzee have a theory of mind?’ revisited. In R. Byrne & A. Whiten (Eds.),Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford, England: Clarendon Press.Google Scholar
  36. Price, J. L., Russchen, F. T., & Amaral, D. G. (1987). The amygdaloid complex. In L. W. Swanson, A. Bjorklund, & T. Hokfelt (Eds.),Handbook of chemical neuroanatomy: Vol. 5. Integrated systems, part 1. New York: Elsevier.Google Scholar
  37. Provine, R. R. (1986): Yawning as a stereotyped action pattern and releasing stimulus.Ethology, 72 109–122.Google Scholar
  38. Signer, S. F. (1987). Capgras' syndrome: The delusion of substitution.Journal of Clinical Psychiatry, 48, 147–150.Google Scholar
  39. Wing, L. (Ed.). (1988).Aspects of Autism: Biological research. Oxford, England: Alden Press.Google Scholar
  40. Yamane, S., Kaji, S., & Kawano, K. (1988). What facial features activate face neurons in the inferotemporal cortex of the monkey?Experimental Brain Research, 73, 209–214.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Leslie Brothers
    • 1
  1. 1.Office of Research — 151Sepulveda VA Medical CenterSepulveda

Personalised recommendations