Journal of Chemical Ecology

, Volume 8, Issue 3, pp 579–633

Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California

  • L. P. Brower
  • J. N. Seiber
  • C. J. Nelson
  • S. P. Lynch
  • P. M. Tuskes
Article

Abstract

This paper is the first in a series on cardenolide fingerprinting of the monarch butterfly. New methodologies are presented which allow both qualitative and quantitative descriptions of the constituent cardenolides which these insects derive in the wild from specificAsclepias foodplants. Analyses of thin-layer Chromatographic profiles ofAsclepias eriocarpa cardenolides in 85 individual plant-butterfly pairs collected at six widely separate localities in California indicate a relatively invariant pattern of 16–20 distinct cardenolides which we here define as theAsclepias eriocarpa cardenolide fingerprint profile. Cardenolide concentrations vary widely in the plant samples, but monarchs appear able to regulate total storage by increasing their concentrations relative to their larval host plant when reared on plants containing low concentrations, and vice versa. Forced-feeding of blue jays with powdered butterfly and plant material and with one of the constituent plant cardenolides, labriformin, established that theA. eriocarpa cardenolides are extremely emetic, and that monarchs which have fed on this plant contain an average of 16 emetic-dose fifty (ED50) units. The relatively nonpolar labriformin and labriformidin in the plant are not stored by the monarch but are metabolized in vivo to desglucosyrioside which the butterfly does store. This is chemically analogous to the way in which monarchs and grasshoppers metabolize another series of milkweed cardenolides, those found inA. curassavica. It appears that the sugar moiety through functionality at C-3′ determines which cardenolides are metabolized and which are stored. The monarch also appears able to store several lowRf cardenolides fromA. eriocarpa without altering them. Differences in the sequestering process in monarchs and milkweed bugs (Oncopeltus) may be less than emphasized in the literature. The monarch is seen as a central organism involved in a coevolutionary triad simultaneously affecting and affected by both its avian predators and the secondary chemistry of the milkweeds with which it is intimately involved.

Key words

Danaus plexippus Danaidae monarch butterflies Asclepias eriocarpa Asclepiadaceae milkweeds coevolution thin-layer chromatography glycosides cardenolides cardenolide fingerprints chemical defense chemical ecology labriformin labriformidin desglucosyrioside emesis ecological chemistry plant-insect interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abisch, E., andReichstein, T. 1962. Orientierende chemische Untersuchung einiger Asclepiadaceen und Periplocaceen.Helv. Chim. Acta 45:2090–2116.Google Scholar
  2. Agnew, A.D.Q. 1974. Upland Kenya Wildflowers. Oxford University Press, Oxford, x + 827 pp.Google Scholar
  3. Atsatt, P., andO'dowd, D.J. 1976. Plant defense guilds.Science 193:24–29.Google Scholar
  4. Baker, H.G., andBaker, I. 1975. Studies of nectar constitution and pollination-plant coevolution, pp. 100–140,in L.E. Gilbert and P.H. Raven (eds.). Coevolution of Animals and Plants, University of Texas Press, Austin.Google Scholar
  5. Barbosa, P., andGreenblatt, J. 1979. Effects of leaf age and position on larval preference of the fall webworm,Hyphantria cunea (Lepid. Arctiidae).Can. Entomol 111:381–383.Google Scholar
  6. Barney, W. P., andRock, G.C. 1975. Consumption and utilization by the Mexican bean beetle of soybean plants varying in levels of resistance.J. Econ. Entomol. 68:497–501.Google Scholar
  7. Barthakur, P. 1971. Wang Laboratory 700 Series Program Library 9. Wang Laboratories, Tewksbury, Massachusetts.Google Scholar
  8. Benson, J.M., andSeiber, J.N. 1978. High-speed liquid chromatography of cardiac glycosides in milkweed plants and monarch butterflies.J. Chromatogr. 148:521–527.Google Scholar
  9. Benson, J.M., Seiber, J.N., Keller, R.F., andJohnson, A.E. 1978. Studies on the toxic principle ofAsclepias eriocarpa andAsclepias labriformis, pp. 273–284,in R.F. Keller, K.R. van Kampen, and L. F. James (eds.). Effects of Poisonous Plants on Livestock. Academic Press, New York.Google Scholar
  10. Benson, J.M., Seiber, J.N., Bagley, C.V., Keeler, R.F., Johnson, A.E., andYoung, S. 1979. Effects on sheep of the milkweedsAsclepias eriocarpa andA. labriformis and of cardiac glycoside-containing derivative material.Toxicon 17:155–165.Google Scholar
  11. Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies.Entomol Exp. Appl. 24:264–277.Google Scholar
  12. Boppré, M., Petty, R.L., Schneider, D., andMeinwald, J. 1978. Behaviorally mediated contacts between scent organs: Another prerequisite for pheromone production inDanaus chrysippus males (Lepidoptera).J. Comp. Physiol. 126:97–103.Google Scholar
  13. Botha, C.E.J., Malcolm, S.B., andEvert, R.F. 1977. An investigation of preferential feeding habits in four Asclepiadaceae by the aphidAphis nerii.Protoplasma 92:1–20.Google Scholar
  14. Boyd, C.E., andGoodyear, C.P. 1971. Nutritive quality of food in ecological systems.Arch. Hydrobiol. 69:256–270.Google Scholar
  15. Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Lepidoptera: Nymphaudae).Evolution 34:586–600.Google Scholar
  16. Brattsten, L.B., Wilkinson, C.F., andEisner, T. 1977. Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances.Science 196:1349–1352.Google Scholar
  17. Brewer, J. Short-lived phenomena.News Lepid. Soc. 1977(4): 7.Google Scholar
  18. Brower, L.P. 1970. Plant poisons in a terrestrial food chain and implications for mimicry theory, pp. 69–82,in K.L. Chambers (ed.). Biochemical Coevolution. Proc. 29th Annual Biology Colloquium. Oregon State University, Corvallis, Oregon.Google Scholar
  19. Brower, L.P. 1977. Monarch migration.Nat. Hist. 86(June–July):40–53.Google Scholar
  20. Brower, L.P., andBrower, J.V.Z. 1964. Birds, butterflies, and plant poisons: A study in ecological chemistry.Zoologica 49:137–159.Google Scholar
  21. Brower, L.P., andGlazier, S.C. 1975. Localization of heart poisons in the monarch butterfly.Science 188:19–25.Google Scholar
  22. Brower, L.P., andMoffitt, C.M. 1974. Palatability dynamics of cardenolides in the monarch butterfly.Nature 249:280–283.Google Scholar
  23. Brower, L.P., Brower, J.V.Z., andCorvino, J.M. 1967. Plant poisons in a terrestrial foodchain.Proc. Natl. Acad. Sci. U.S.A. 57:893–898.Google Scholar
  24. Brower, L.P., Ryerson, W.N., Coppinger, L.L., andGlazier, S.C. 1968. Ecological chemistry and the palatability spectrum.Science 161:1349–1351.Google Scholar
  25. Brower, L.P., McEvoy, P.B., Williamson, K.L., andFlannery, M.A. 1972. A new cardiac giycoside assay and the palatability spectrum in natural populations of monarch butterflies.Science 177:426–429.Google Scholar
  26. Brower, L.P., Edmunds, M., andMoffitt, C.M. 1975. Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa.J. Entomol. (A) 49:183–196.Google Scholar
  27. Brower, L.P., Calvert, W.H., Hedrick, L.E., andChristian, J. 1977. Biological observations on an overwintering colony of monarch butterflies (Danaus plexippus, Danaidae) in Mexico.J. Lepid. Soc. 31:232–242.Google Scholar
  28. Brower, L.P., Gibson, D.O., Moffitt, C.M., andPanchen, A.L. 1978. Cardenolide content ofDanaus chrysippus butterflies from three regions of East Africa.Biol. J. Linn. Soc. 10:251–273.Google Scholar
  29. Brower, L.P.,Calvert, W.H.,Glazier, S.C., andSheppard, M. 1982a. The cardenolide content of overwintering monarch butterflies in Mexico. In preparation.Google Scholar
  30. Brower, L.P.,Calvert, W.H., andWalford, P. 1982b. Nectar starvation and lipid utilization in overwintering monarch butterflies in Mexico. In preparation.Google Scholar
  31. Brower, L.P.,Fink, —., andWaide, —. 1982c. In preparation.Google Scholar
  32. Brown, P., Von Euw, J., v.Reichstein, T., Stöckel, K., andWatson, T.R. 1979. Cardenolides ofAsclepias syriaca L., probable structure of syrioside and syriobioside.Helv. Chim. Acta 62:412–441.Google Scholar
  33. Brüschweiler, F., Stöckel, K., andReichstein, T. 1969.Calotropis—Glykoside, vermutliche Teilstruktur.Helv. Chim. Acta 52:2276–2303.Google Scholar
  34. Calvert, W.H., Hedrick, L.E., andBrower, L.P. 1979. Mortality of the monarch butterfly (Danaus plexippus L.): Avian predation at five overwintering sites in Mexico.Science 204:847–851.Google Scholar
  35. Cates, R.G., andOrians, G.H. 1975. Successional status and the palatability of plants to generalized herbivores.Ecology 56:410–418.Google Scholar
  36. Cates, R.G., andRhoades, D.F. 1977. Patterns in the production of antiherbivore chemical defenses in plant communities.Biochem. Syst. Ecol. 5:185–193.Google Scholar
  37. Chaney, S.G., andKare, M.R. 1966. Emesis in birds.J. Am. Vet. Med. Assoc. 149:938–943.Google Scholar
  38. Cheung, H.T., Watson, T.R., Seiber, J.N., andNelson, C.J. 1980. 7β, 8β-Epoxycardenolide glycosides ofAsclepias eriocarpa.J. Chem. Soc. Perkin Trans. I 1980:2169–2173.Google Scholar
  39. Chew, F.S., andRodman, J.E. 1979. Plant resources for chemical defense, pp. 271–307,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  40. Cooper-Driver, G.A., andSwain, T. 1976. Cyanogenic polymorphism in bracken in relation to herbivore predation.Nature 260:604.Google Scholar
  41. Coulman, B.E., Clark, K.W., andWoods, D.L. 1977a. Effects of selected reed canary grass alkaloids on in vitro digestibility.Can. J. Plant Sci. 57:779–785.Google Scholar
  42. Coulman, B.E., Woods, D.L., andClark, K.W. 1977b. Distribution within the plant, variation with maturity, and heritability of gramine and hordenine in reed canary grass.Can. J. Plant Sci. 57:771–777.Google Scholar
  43. Dadd, R.H. 1973. Insect nutrition: Current developments and metabolic implications.Annu. Rev. Entomol. 18:381–420.Google Scholar
  44. Dean, R.B., andDixon, W. J. 1951. Simplified statistics for small numbers of observations.Anal. Chem. 23:636–638.Google Scholar
  45. Dewaal, D. 1942. Het Cyanophore Kakakter van witte Klauver,Trifolium repens L. Thesis, H. Veenmanen Zonen N.V., Wageningen, Netherlands.Google Scholar
  46. Dingle, H. 1978. Migration and diapause in tropical, temperate, and island milkweed bugs, pp. 254–276,in H. Dingle (ed.). Evolution of Insect Migration and Diapause. Springer-Verlag, New York.Google Scholar
  47. Dixon, C.A., Erickson, J.M., Kellett, D.N., andRothschild, M. 1978. Some adaptations betweenDanaus plexippus and its foodplant, with notes onDanaus chrysippus andEuploea core (Insecta: Lepidoptera).J. Zool. London 185:437–467.Google Scholar
  48. Dixon, W. J., andMassey, F. J. 1957. Introduction to Statistical Analysis, 2nd. ed. McGraw-Hill Book Co., Inc., New York.Google Scholar
  49. Dolinger, P.M., Ehrlich, P.R., Fitch, W.L., andBreedlove, D.E. 1973. Alkaloid and predation patterns in Colorado lupine populations.Oecologia (Berlin) 13:191–204.Google Scholar
  50. Duffey, S.S. 1977. Arthropod allomones: Chemical effronteries and antagonists.XVth. Int. Congr. Entomol., 1976. Washington, D.C. pp. 323–394.Google Scholar
  51. Duffey, S.S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol 25:447–477.Google Scholar
  52. Duffey, S.S., andScudder, G.G.E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera.J. Insect Physiol. 18:63–78.Google Scholar
  53. Duffey, S.S., andScudder, G.G.E. 1974. Cardiac glycosides inOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). I. The uptake and distribution of natural cardenolides in the body.Can. J. Zool. 52:283–290.Google Scholar
  54. Duffey, S.S., Blum, M.S., Isman, M.B., andScudder, G.G.E. 1978. Cardiac glycosides: A physical system for their sequestration by the milkweed bug.J. Insect Physiol. 24:639–645.Google Scholar
  55. Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1974. Co-evolution of danaid butterflies with their host plants.Nature 250:646–648.Google Scholar
  56. Edgar, J.A., Cockrum, P.A., andFrahan, J.L. 1976. Pyrrolizidine alkaloids inDanaus plexippus L. andDanaus chrysippus L.Experentia 32:1535–1537.Google Scholar
  57. Edgar, J.A., Boppré, M., andSchneider, D. 1979. Pyrrolizidine alkaloid storage in African and Australian danaid butterflies.Experientia 35:1447–1448.Google Scholar
  58. Ehrlich, P.R. 1970. Coevolution and the biology of communities, pp. 1–11,in K.L. Chambers (ed.). Biochemical Coevolution. Oregon State University Press, Corvallis, Oregon.Google Scholar
  59. Ehrlich, P.R., andRaven, P.H. 1965. Butterflies and plants: A study in Coevolution.Evolution 18:586–608.Google Scholar
  60. Ellis, W.M., Keymer, R.J., andJones, D.A. 1977a. On the polymorphism of cyanogenesis inLotus corniculatus L. VIII. Ecological studies in Anglesey.Heredity 39:45–65.Google Scholar
  61. Ellis, W.M., Keymer, R.J., andJones, D.A. 1977b. The effect of temperature on the polymorphism of cyanogenesis inLotus corniculatus L.Heredity 38:339–347.Google Scholar
  62. Evans, F.J., andCowley, P.S. 1972. Cardenolides and spirostanols inDigitalis purpurea at various stages of development.Phytochemistry 11:2971–2975.Google Scholar
  63. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.Google Scholar
  64. Feeny, P. 1975. Biochemical Coevolution between plants and their insect herbivores, pp. 3–19,in L.E. Gilbert and P.M. Raven(eds.). Coevolution of Animals and Plants. University of Texas Press, Austin, Texas.Google Scholar
  65. Feeny, P. 1976. Plant apparency and chemical defense.Rec. Adv. in Phytochem. 10:1–40.Google Scholar
  66. Feeny, P. 1977. Defensive ecology of the Cruciferae.Ann. Mo. Bot. Garden 64:221–234.Google Scholar
  67. Feir, D., andSuen, J. 1971. Cardenolides in the milkweed plant and feeding by the milkweed bug.Ann. Entomol. Soc. Am. 64:1173–1174.Google Scholar
  68. Ferm, R. 1977. A comparative study of cardiac glycoside sequestering byDanaus plexippus andDanaus chrysippus. Honors thesis, Amherst College.Google Scholar
  69. Fink, L.S., andBrower, L.P. 1981. Birds can overcome the cardenolide defence of monarch butterflies in Mexico.Nature 291:67–70.Google Scholar
  70. Fox, L.R., andMacauley, B.J. 1977. Insect grazing onEucalyptus in response to variation in leaf tannins and nitrogen.Oecologia (Berlin) 29:145–162.Google Scholar
  71. Fraenkel, G.S. 1959. The raison d'etre of secondary plant substances.Science 129:1466–1470.Google Scholar
  72. Futuyma, D. J. 1976. Foodplant specialization and environmental predictability in Lepidoptera.Am. Nat. 110:285–292.Google Scholar
  73. Garcia, J. 1980. Tilting at the papermills of academe. American Psychological Association, 1980 address, Montreal, Canada, pp. 1–31.Google Scholar
  74. Garcia, J., andHankins, W.G. 1975. Evolution of bitter and the acquisition of toxophobia, pp. 39–45,in D.A. Denton and J.P. Coghlan (eds.). Olfaction and Taste, Vol. 5. Academic Press, New York.Google Scholar
  75. Gilbert, L.E., andRaven, P.M. 1975. General introduction, pp. ix-xiii,in L.E. Gilbert and P.H. Raven (eds.). Coevolution of Animals and Plants. University of Texas Press, Austin, Texas.Google Scholar
  76. Harborne, J.B. 1977. Introduction to Ecological Biochemistry. Academic Press, New York.Google Scholar
  77. Heinrich, B. 1979. Bumblebee Economics. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  78. Hesse, G., andLudwig, G. 1960. Voruscharin, ein zweites schwefelhaltiges Herzgift ausCalotropis procera L.Liebigs Ann. Chem. 632:158–171.Google Scholar
  79. Hirotani, M., andFuruya, T. 1977. Restoration of cardenolide synthesis in redifferentiated shoots from callus cultures ofDigitalispurpurea.Phytochemistry 16:610–611.Google Scholar
  80. House, H.L. 1969. Effects of different proportions of nutrients on insects.Entomol. Exp. Appl. 12:659–669.Google Scholar
  81. Isman, M.B. 1977. Dietary influence of cardenolides on larval growth and development of the milkweed bugOncopeltus fasciatus.J. Insect Physiol. 23:1183–1187.Google Scholar
  82. Isman, M.B., Duffey, S.S., andScudder, G.G.E. 1977a. Variation in cardenolide content of the Lygaeid bugs,Oncopeltus fasciatus andLygaeus kalmii kalmii and of their milkweed hosts (Asclepias spp.) in Central California.J. Chem. Ecol 3:613–624.Google Scholar
  83. Isman, M.B., Duffey, S.S., andScudder, G.G.E. 1977b. Cardenolide content of some leaf-and stem-feeding insects on temperate North American milkweeds (Asclepias spp.).Can. J. Zool. 55:1024–1028.Google Scholar
  84. Janzen, D.H. 1980. When is it coevolution?Evolution 34:611–612.Google Scholar
  85. Jones, D.A. 1973. Co-evolution and cyanogenesis, pp. 213–242,in V.H. Heywood (ed.). Taxonomy and Ecology. Academic Press, New York.Google Scholar
  86. Jones, D.A., Keymer, R.J., andEllis, W.M. 1978. Cyanogenesis in plants and animal feeding, pp. 21–34,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.Google Scholar
  87. Karawya, M.S., Balboa, S.I., andKhayyal, S.E. 1973. Estimation of cardenolides inNerium oleander.Planta Med. 23:70–73.Google Scholar
  88. Koeppe, D.K., Southwick, L.M., andBittell, J.E. 1976. The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions.Can. J. Bot. 54:593–599.Google Scholar
  89. Kuchokhidze, D.K., Puchkova, E.I., Kolomhtseva, T.N., andEristavi, L.I. 1974. Dynamics of the accumulation of cardiac glycosides in the leaves ofRhodeajaponica depending on the conditions of growth and the phase of development.Tbilis Gos. Med. Inst. Tbilisi(U.S.S.R.) 74:621–624.Google Scholar
  90. Laycock, W.A. 1975. Alkaloid content of duncecap larkspur after two years of clipping.J. Range Manage. 28:257–259.Google Scholar
  91. Laycock, W.A. 1978. Coevolution of poisonous plants and large herbivores on rangelands.J. Range Manage. 31:335–342.Google Scholar
  92. Levin, D.A. 1976a. Alkaloid-bearing plants: An ecogeographic perspective.Am. Nat 110: 261–284.Google Scholar
  93. Levin, D.A. 1976b. The chemical defenses of plants to pathogens and herbivores.Annu. Rev. Ecol. Syst. 7:121–159.Google Scholar
  94. Levin, D.A., andYork, B.M., Jr. 1978. The toxicity of plant alkaloids: An ecogeographic perspective.Kochern. Syst. Ecol. 6:61–76.Google Scholar
  95. Marsh, N.A., Clarke, C.A., Rothschild, M., andKellett, D.N. 1977.Hypolimnas bolina (L.), a mimic of danaid butterflies, and its modelEuploea core (Cram.) store cardioactive substances.Nature 268:726–728.Google Scholar
  96. Masler, L., Bauer, S., BauerovÁ, O., andSikl, D. 1961. Herzglykoside der Scidenpflanze (Asclepias syriaca L.) I. Isolierung der Herzwirksamen steroide.Experientia 17:872–881.Google Scholar
  97. Mathavan, S., andBhaskaran, R. 1975. Food selection and utilization in a danaid butterfly.Oecologia (Berlin) 18:55–62.Google Scholar
  98. Mathavan, S., andPandian, T. J. 1975. Effect of temperature on food utilization in the monarch butterflyDanaus chrysippus.Oikos 26:60–64.Google Scholar
  99. Mathavan, S., Pandian, T.J., andMary, M.J. 1976. Use of feeding rate as an indicator of caloric value in some Lepidopterous larvae.Oecologia (Berlin) 24:91–94.Google Scholar
  100. McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  101. McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., andStruhsaker, T.T. 1978. Phenolic content of vegetation of two African rain forests: Ecological implications.Science 202:61–64.Google Scholar
  102. Mothes, K. 1976. Secondary plant substances as materials for chemical high quality breeding in higher plants.Rec. Adv. Phytochem. 10:385–405.Google Scholar
  103. Neher, R. 1969. TLC of steroids and related compounds, p. 311, in E. Stahl (ed.). Thin-Layer Chromatography, A Laboratory Handbook. Springer-Verlag, New York.Google Scholar
  104. Nelson, C.J., Seiber, J.N., andBrower, L.P. 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed,Asclepias eriocarpa, and implications for plant defense.J. Chem. Ecol. 7:981–1010.Google Scholar
  105. Pandian, T.J., Pitchairaj, R., Mathavan, S., andPalanichamy, R. 1978. Effects of temperature and leaf ration on the water budget of the final instar larvae ofDanaus chrysippus L. (Lepidoptera: Danaidae).Monitore Zool. Ital. (N.S.) 12:17–28.Google Scholar
  106. Parker, R., andWilliams, M.C. 1974. Factors affecting miserotoxin metabolism in Timber Milkvetch.Weed Sci. 22:552–556.Google Scholar
  107. Parsons, J.A. 1965. A digitalis-like toxin in the monarch butterfly,Danaus plexippus L.J. Physiol. 178:290–304.Google Scholar
  108. Price, P.W., andWillson, M.F. 1979. Abundance of herbivores on six milkweed species in Illinois.Am. Midl. Nat. 101:76–86.Google Scholar
  109. Price, P.W., Boulton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  110. Rafaeli-Bernstein, A., andMordue, W. 1978. The transport of the cardiac glycoside ouabain by the malphigian tubules ofZonocerus variegatus.Physiol. Entomol. 3:59–63.Google Scholar
  111. Reichstein, T., Von Euw, J., Parsons, J.A., andRothschild, M. 1968. Heart poisons in the monarch butterfly.Science 161:861–866.Google Scholar
  112. Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Rec. Adv. Phytochem. 10:168–213.Google Scholar
  113. Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Ecol. Syst. 8:43–50.Google Scholar
  114. Roeske, C.N., Seiber, J.S., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.).Rec. Adv. Phytochem. 10:93–167.Google Scholar
  115. Rosenthal, G. A., andJanzen, D.H. (eds.). 1979. Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York, xvi + 718 pp.Google Scholar
  116. Rothschild, M. 1973. Secondary plant substances and warning coloration in insects, pp. 59–83,in H.F. van Emden (ed.). Insect/Plant Relationships. Symposium of the Royal Entomological Society, London, Vol. 6.Google Scholar
  117. Rothschild, M. 1977. The cat-like caterpillar.News Lepid. Soc. 1977(6):9.Google Scholar
  118. Rothschild, M., andEdgar, J.A. 1978. Pyrrolizidine alkaloids fromSenecio vulgaris sequestered and stored byDanaus plexippus. J. Zool. London 186:347–349.Google Scholar
  119. Rothschild, M., andFord, B. 1970. Heart poisons and the monarch.Nat. Hist. 79(4): 36–37.Google Scholar
  120. Rothschild, M., andKellett, D.N. 1972. Reactions of various predators to insects storing heart poisons (cardiac glycosides) in their tissues.J. Entomol. (A) 46:103–110.Google Scholar
  121. Rothschild, M., andMarsh, N. 1978. Some peculiar aspects of Danaid/plant relationships.Entomol. Exp. Appl. 24:437–450.Google Scholar
  122. Rothschild, M., Reichstein, T., andVon Euw, J. 1973. (no title).Proc. R. Entomol. Soc. London 37(9): 37–38.Google Scholar
  123. Rothschild, M., von Euw, J., Reichstein, T., Smith, D.A.S., andPierre, J. 1975. Cardenolide storage inDanaus chrysippus (L.) with additional notes onD. plexippus.Proc. R. Soc. London, Ser. B 190:1–31.Google Scholar
  124. Rowson, J.M. 1952. Studies in the genusDigitalis, Part I. The colorimetric estimation of digitoxin and preparations ofDigitalis purpurea.J. Pharm. Pharmacol. 4:814–830.Google Scholar
  125. Schroeder, L.A. 1976. Energy, matter and nitrogen utilization by the larvae of the monarch butterflyDanaus plexippus.Oikos 27:259–264.Google Scholar
  126. Schweitzer, D.F. 1979. Effects of foliage age on body weight and survival in larvae of the tribe Lithophanini (Lepidoptera: Noctuidae).Oikos 32:403–408.Google Scholar
  127. Scriber, J.M. 1977. Limiting effects of low leaf-water content on the nitrogen utilization, energy budget, and larval growth ofHyalophora cecropia (Lepidoptera: Saturniidae).Oecologia (Berlin) 28:269–287.Google Scholar
  128. Scriber, J.M., andSlansky, F., Jr. 1981. The nutritional ecology of immature insects.Annu. Rev. Entomol. 26:183–211.Google Scholar
  129. Seiber, J.N., Roeske, C.N., andBenson, J.M. 1978. Three new cardenolides from the milkweedsAsclepias eriocarpa andA. labriformis.Phytochemistry 17:967–970.Google Scholar
  130. Seiber, J.N., Tuskes, P.M., Brower, L.P., andNelson, C.J. 1980. Pharmacodynamics of some individual cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.).J. Chem. Ecol. 6:321–339.Google Scholar
  131. Sinden, S.L., Schalk, J.M., andStoner, A.K. 1978. Effects of daylength and maturity of tomato plants on tomatine content and resistance to the Colorado potato beetle.J. Am. Soc. Hortic. Sci. 103:596–600.Google Scholar
  132. Slansky, F., Jr., andFeeny, P. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on the wild and cultivated foodplants.Ecol. Monogr. 47:209–228.Google Scholar
  133. Steel, R.G.D., andTorrie, J.H. 1960. Principles and Procedures in Statistics. McGraw-Hill Book Co., New York, 481 pp.Google Scholar
  134. Stoll, A. 1940. The Cardiac Glycosides. The Pharmaceutical Press, London.Google Scholar
  135. Sturgeon, K.B. 1979. Monoterpene variation in ponderosa pine xylem related to western pine beetle predation.Evolution 33:803–814.Google Scholar
  136. Swain, T. 1977. Secondary compounds as protective agents.Annu. Rev. Plant Physiol. 28:479–501.Google Scholar
  137. Tahsler, B.D. 1975. The distribution of cardenolides inAsclepias curassavica andA. nivea and its effect on the uptake of cardenolides by monarch butterfly larvae: Implications for the cardenolide dynamics of natural monarch populations. Honors thesis, Amherst College, Amherst, Massachusetts.Google Scholar
  138. Taylor, W.I. 1963. Alkaloids, pp. 758–778,in A. Standen (ed.). Kirk-Othmer Encyclopedia of Chemical Technology, 2nd. ed., Vol. 1. Interscience, New York.Google Scholar
  139. Thomashow, P. 1975. The paradox of the cryptic chrysalid. Honors thesis, Hampshire College, Amherst, Massachusetts.Google Scholar
  140. Tuskes, P.M., andBrower, L.P. 1978. Overwintering ecology of the monarch butterfly,Danaus plexippus L., in California.Ecol. Entomol. 3:141–153.Google Scholar
  141. Urquhart, F.A. 1960. The Monarch Butterfly. University of Toronto Press, Toronto, Canada, xxiv + 361 pp.Google Scholar
  142. Urquhart, F. A., andUrquhart, N.R. 1976. The overwintering site of the eastern population of the monarch butterfly (Danaus plexippus; Danaidae) in southern Mexico.J. Lepid. Soc. 30:153–158.Google Scholar
  143. Urquhart, F.A. andUrquhart, N.R. 1979. Vernal migration of the monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America from the overwintering site in the neo-volcanic plateau of Mexico.Can. Entomol. 111:15–18.Google Scholar
  144. Vaughan, F.A.1979. Effect of gross cardiac glycoside content of seeds of common milkweedAsclepias syriaca, on cardiac glycoside uptake by the milkweed bugOncopeltus fasciatus.J. Chem. Ecol. 5:89–100.Google Scholar
  145. Vaughan, G.L. andJungreis, A.M. 1977. Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides.J. Insect Physiol. 23:585–589.Google Scholar
  146. Von Euw, J., Fishelson, L., Parsons, J.A., Reichstein, T. andRothschild, M. 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweeds.Nature 214:35–39.Google Scholar
  147. Waldbauer, G. P. 1968. The consumption and utilization of food by insects.Adv. Insect Physiol. 5:229–288.Google Scholar
  148. Whittaker, R.H. andFeeny, P.1971. Allelochemics: Chemical interactions between species.Science 171:757–770.Google Scholar
  149. Wichtl, M.V. 1975. Chemische Rassen bei Glykosidpflanzen.Planta Med. 28:257–268.Google Scholar
  150. Woodson, R.E., Jr.1954. The North American species ofAsclepias L.Ann. Mo. Bot. Garden 41:1–211.Google Scholar
  151. Yoder, C.A., Leonard, D.E. andLerner, J. 1976. Intestinal uptake of ouabain and digitoxin in the milkweed bug,Oncopeltus fasciatus.Experientia 32:1549–1550.Google Scholar
  152. Zar, J.H. 1974. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey, xvi + 620 pp.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • L. P. Brower
    • 1
  • J. N. Seiber
    • 2
  • C. J. Nelson
    • 2
  • S. P. Lynch
    • 3
  • P. M. Tuskes
    • 2
  1. 1.Department of ZoologyUniversity of FloridaGainesville
  2. 2.Department of Environmental ToxicologyUniversity of CaliforniaDavis
  3. 3.Department of Biological SciencesLouisiana State UniversityShreveport

Personalised recommendations