Plant Systematics and Evolution

, Volume 204, Issue 3–4, pp 233–256

Hybridization and evolution inCardamine (Brassicaceae) at Urnerboden, Central Switzerland: Biosystematic and molecular evidence

  • Krystyna M. Urbanska
  • Herbert Hurka
  • Elias Landolt
  • Barbara Neuffer
  • Klaus Mummenhoff


Hybridization between two diploid (2n = 2x = 16) species ofBrassicaceae, Cardamine rivularis andC. amara, at Urnerboden, Central Switzerland, resulted in the rather unusual triploid hybridC. insueta (2n = 3x = 24), and later on in the amphiploidC. schulzii (2n = 6x = 48). The hybrid and the neopolyploid species colonized successfully some man-made biotopes. Plants ofC. insueta are mostly functional females with non-dehiscent anthers, but true hermaphrodite individuals with partly sterile pollen grains also occur within the population. Analyses of cpDNA and nuclear DNA permitted to establish the parentage of the hybrid: the maternal parent which contributed unreduced egg cells proved to beC. rivularis whereas the normally reduced pollen originated fromC. amara. The pronounced genetic variability inC. insueta revealed by isozyme and RAPD analyses, at variance with the polarized segregation, heterogamy and strong vegetative reproduction of the hybrid, is possibly influenced by recurrent formation ofC. insueta which party results from backcrosses betweenC. insueta andC. rivularis but may also proceed by other pathways. The amphiploidCardamine schulzii has normally developed anthers but its pollen is sometimes highly sterile. The surprisingly uniform genetic make-up of the new amphiploid species might be related to its possible monotopic origin and/or young phylogenetic age but should be further assessed. Site management seems to be very important to a further development of hybridogenous populations and their parent species. In conclusion, the evolution at Urnerboden is discussed in the context of the traditional concept of multiple plant origins.

Key words

Brassicaceae Cardamine amara C. ×insueta C. rivularis C. schulzii Hybridization evolution amphiploidy introgression cpDNA isozymes RAPD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartelheim, S., 1996: Biosystematische Untersuchungen imCardamine pratensis-Komplex (Brassicaceae) und verwandten Arten. Rubisco- und Isoenzymanalysen. — Unpublished Ph.D. Thesis, University of Osnabrück.Google Scholar
  2. Brochmann, C., Soltis, D. E., Soltis, P. S., 1992: Electrophoretic relationships and phylogeny of Nordic polyploids inDraba (Brassicaeae). — Pl. Syst. Evol.182: 35–70.Google Scholar
  3. Cleland, R. E., 1972:Oenothera: cytogenetics and evolution. — New York: Academic Press.Google Scholar
  4. Crawford, D. J., Smith, E. B., 1984: Allozyme divergence and intraspecific variation inCoreopsis grandiflora (Compositae). — Syst. Bot.9: 219–225.Google Scholar
  5. de Vries, H., Boedjin, H., 1924: Die Gruppierung der Mutanten vonOenothera Lamarckiana. — Ber. Deutsch. Bot. Ges.42: 174–178.Google Scholar
  6. Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.Google Scholar
  7. —, —, —, —, 1990: Multiple origins of polyploids in theGlycine tabacina complex inferred from chloroplast DNA polymorphism. — Proc. Natl. Acad. Sci. USA87: 714–717.Google Scholar
  8. Emerson, S., 1935: The genetic nature ofDe Vries' mutation inOenothera Lamarckiana. — Amer. Naturalist69: 545–559.Google Scholar
  9. Erickson, L. R., Straus, N. A., Beversdorf, W. B., 1983: Restriction patterns reveal origins of chloroplast genomes inBrassica amphidiploids. — Theor. Appl. Genet.65: 201–206.Google Scholar
  10. Fagerlind, F., 1940: Sind diecanina-Rosen agamospermische Bastarde? — Svensk Bot. Tidskr.34: 334–354.Google Scholar
  11. Hurka, H., Düring, S., 1994: Genetic control of plastidic L-glutamate dehydrogenase isozymes in the genusCapsella (Brassicaceae). — Heredity72: 126–131.Google Scholar
  12. —, 1989: Aspartate aminotransferase isozymes in the genusCapsella (Brassicaceae). Subcellular location, gene duplication and polymorphism. — Biochem. Genet.27: 77–90.Google Scholar
  13. Knox, R. B., 1987: Pollen differentiation patterns and male function. — InUrbanska, K. M., (Ed.): Differentiation patterns in higher plants, pp. 33–51. — London: Academic Press.Google Scholar
  14. Landolt, E., 1984: Über die Artengruppe derCardamine pratensis L. in der Schweiz. — Diss. Bot.72: 481–497.Google Scholar
  15. Marhold, K., 1991:Cardamine amara L. in the Slovakian and Polish Carpathians. — Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich106: 273–281.Google Scholar
  16. —, 1994: Chromosome numbers of the genusCardamine L. (Cruciferae) in the Carpathians and in Pannonia. — Phyton (Horn, Austria)34: 19–33.Google Scholar
  17. —, 1994: Typification of the names of two species ofCardamine pratensis group (Brassicaceae). — Taxon43: 77–83.Google Scholar
  18. Morita, T., Sterk, A. A., den Nijs, J. C. M., 1990: The significance of agamospermous triploid pollen donors in the sexual relationships between diploids and tetraploids inTaraxacum (Compositae). — Pl. Spec. Biol.5: 167–176.Google Scholar
  19. Mulligan, G. A., Moore, R. J., 1961: Natural selection among hybrids betweenCarduus acanthoides andC. nutans in Ontario. — Canad. J. Bot.39: 269–279.Google Scholar
  20. Mummenhoff, K., Hurka, H., 1995: Allopolyploid origin ofArabidopsis suecica (Fries)Norrlin: evidence from chloroplast and nuclear genome markers. — Bot. Acta108: 449–456.Google Scholar
  21. —, 1994: Chloroplast DNA restriction site variation and phylogenetic relation-ships in the genusThlaspi sensu lato (Brassicaceae). — Syst. Bot.19: 73–88.Google Scholar
  22. —, 1995: Systematic implications of chloroplast DNA variation inLepidium sectionsCardamon, Lepiocardamon andLepia (Brassicaceae). — Pl. Syst. Evol.196: 75–88.Google Scholar
  23. Neuffer, B., Jahncke, P., 1997: RAPD analyses of hybridization events inCardamine (Brassicaceae). — J. Pl. Ecol. Syst. (in press).Google Scholar
  24. Ownbey, M., 1950: Natural hybridization and amphiploidy in the genusTragopogon. — Amer. J. Bot.37: 487–499.Google Scholar
  25. Palmer, J. D., 1987: Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. — Amer. Naturalist130: 6–29.Google Scholar
  26. Schüpp, M., 1960: Klimatologie der Schweiz, C. Lufttemperatur. — Beiheft Ann. Schweiz. Meteorolog. ZA1959.Google Scholar
  27. Smith-White, S., 1948: Polarized segregation in the pollen mother cells of a stable triploid. — Heredity2: 119–129.Google Scholar
  28. —, 1955: The life history and genetic system ofLeucopogon juniperinus. — Heredity9: 79–91.Google Scholar
  29. —, 1959: Pollen development patterns in theEpacridaceae. — Proc. Linn. Soc. New South-Wales84: 8–35.Google Scholar
  30. Soltis, D. E., Soltis, P. S., 1989: Allopolyploid speciation inTragopogon: insights from chloroplast DNA. — Amer. J. Bot.76: 1119–1124.Google Scholar
  31. —, 1990: Chloroplast DNA and nuclear rDNA variation: insights into autopolyploid and allopolyploid evolution. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 97–117. — London: Academic Press.Google Scholar
  32. Stace, C. A., 1975: Hybridization and the flora of the British Isles. — London: Academic Press.Google Scholar
  33. Taeckholm, G., 1922: Zytologische Studien über die GattungRosa. — Acta Horti Berg.7: 97–381.Google Scholar
  34. Urbanska, K. M., 1977a: Reproduction in natural triploid hybrids (2n = 24) betweenCardamine rivularis Schur andC. amara L. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich44: 42–85.Google Scholar
  35. —, 1977b: An autoallohexaploid inCardamine L., new to the Swiss flora. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich44: 86–103.Google Scholar
  36. —, 1978: Ségrégation polarisée chez les hybrides naturels triploides (2n = 24) entreCardamine rivularis Schur etC. amara L. — Bull. Soc. Bot. France. Actual. Bot.1–2: 91–93.Google Scholar
  37. - 1979: Reproductive strategies in a hybridogenous population ofCardamine L. — Proc. Int. Symp. Repr. Flow. Pl. Christchurch, p. 46.Google Scholar
  38. —, 1980: Reproductive strategies in a hybridogenous population ofCardamine L. — Oecol. Pl.1: 137–150.Google Scholar
  39. —, 1987: Disturbance, hybridization and hybrid speciation. — Invan Andel, J., Bakker, J. P., Snaydon, R. W., (Eds): Disturbance in grasslands, pp. 285–301. — Dordrecht: Junk.Google Scholar
  40. —, 1989: Reproductive effort or reproductive offer? A revised approach to reproductive strategies of flowering plants. — Bot. Helv.99: 49–63.Google Scholar
  41. —, 1990: Biology of asexually reproducing plants. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 273–292. — London: Academic Press.Google Scholar
  42. —, 1994: Pollen, mating and paternity in agamospermous angiosperms. — Pl. Spec. Biol.9: 57–67.Google Scholar
  43. —, 1972: Natürliche Bastarde zwischenCardamine amara L. undC. rivularis Schur aus den Schweizer Alpen. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich41: 88–101.Google Scholar
  44. —, —, 1974: Biosystematic investigations inCardamine pratensis L. s. l. I. Diploid taxa from Central Europe and their fertility relationships. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich42: 42–139.Google Scholar
  45. —, —, 1974b: Hybridation naturelle entreCardamine rivularis Schur etC. amara L., ses aspects cytologiques et écologiques. — Acta Soc. Helv. Sci. Nat.1974: 89–90.Google Scholar
  46. —, —, 1978: Recherches démographiques et écologiques sur une population hybridogène deCardamine L. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich45: 30–53.Google Scholar
  47. Uttinger, H., 1965: Klimatologie der Schweiz. E. Niederschlag. — Beiheft Ann. Schweiz. Meteorol. ZA1964.Google Scholar
  48. Warwick, S. I., Bain, J. F., Wheatcroft, R., Thompson, B. K., 1989: Hybridization and introgression inCarduus nutans andC. acanthoides, reexamined. — Syst. Bot.14: 476–494.Google Scholar
  49. Wendel, J. F., 1989: New world tetraploid cottons contain Old World cytoplasm. — Proc. Natl. Acad. Sci. USA86: 4132–4136.Google Scholar
  50. Wyatt, R., Odrzykoski, I. K., Stoneburger, A., 1988: Allopolyploidy in bryophytes: Recurring origins ofPlagiomnium medium. — Proc. Natl. Acad. Sci. USA85: 5601–5604.Google Scholar
  51. Zimmerli, S., 1984: The influence of management upon the development and the structure of theCardamine populations at Urnerboden. — Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich51: 38.Google Scholar
  52. —, 1986: Einfluss der Bewirtschaftung auf die Entstehung und Struktur derCardamine-Populationen auf dem Urnerboden. — Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich87: 141–154.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Krystyna M. Urbanska
    • 1
  • Herbert Hurka
    • 2
  • Elias Landolt
    • 1
  • Barbara Neuffer
    • 2
  • Klaus Mummenhoff
    • 2
  1. 1.Geobotanical Institute SFIT ZürichZürichSwitzerland
  2. 2.Systematic BotanyUniversity of OsnabrückOsnabrückGermany

Personalised recommendations