Advertisement

Journal of Chemical Ecology

, Volume 16, Issue 9, pp 2623–2635 | Cite as

Novel internally branched, internal alkenes as major components of the cuticular hydrocarbons of the primitive australian antNothomyrmecia macrops Clark (Hymenoptera: Formicidae)

  • W. Vance Brown
  • Pierre Jaisson
  • Robert W. Taylor
  • Michael J. Lacey
Article

Abstract

Internally mono- and dimethyl branched, internal alkenes, which constitute most of the cuticular hydrocarbon present on workers of the primitive Australian antNothomyrmecia macrops Clark, have been identified by gas chromatography-mass spectrometry. They are the first such alkenes reported from insects. Also present are alkanes with similar carbon skeletons. The hydrocarbon patterns of three separateNothomyrmecia colonies were very similar.

Key Words

Internally branched alkenes internal alkenes cuticular hydrocarbons Nothomyrmecia macrops Hymenoptera Formicidae ants gas chromatography mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderssohn, A.M., andHadley, N.F. 1987. Regional variation in cuticular hydrocarbon composition in the common house cricket,Acheta domesticus.Comp. Biochem. Physiol. 88B:875–879.Google Scholar
  2. Attygalle, A.B., andMorgan, E.D. 1984. Chemicals from the glands of ants.Chem. Soc. Rev. 13:245–278.Google Scholar
  3. Billen, J.P.J., Jackson, B.D., andMorgan, E.D. 1988. Secretion of the Dufour gland of the antNothomyrmecia macrops (Hymenoptera: Formicidae).Experientia 44:715–719.Google Scholar
  4. Blomquist, G.J., Nelson, D.R., and deRenobales, M. 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids.Arch. Insect Biochem. Physiol. 6:227–265.Google Scholar
  5. Bonavita-Cougourdan, A., Clément, J.-L., andLange, C. 1988. Reconnaissance des larves chez la fourmiCamponotus vagus Scop. Phénotypes larvaires des spectres d'hydrocarbures cuticulaires.C. R. Acad. Sci. (Paris) Ser. III 306:299–305.Google Scholar
  6. Borchers, F., Levsen, K., Schwarz, H., Wesdemiotis, C., andWolfschütz, R. 1977a. Ring opening reactions in cycloalkane molecular ions. A collisional activation and field ionization kinetic study.J. Am. Chem. Soc. 99:1716–1721.Google Scholar
  7. Borchers, F., Levsen, K., Schwarz, H., Wesdemiotis, C., andWinkler, H.U. 1977b. Isomerization of linear octene cations in the gas phase.J. Am. Chem. Soc. 99:6359–6365.Google Scholar
  8. Brophy, J.J., Cavill, G.W.K., Davies, N.W., Gilbert, T.D., Philp, R.P., andPlant, W.D. 1983. Hydrocarbon constituents of three species of dolichoderine ants.Insect Biochem. 13:381–389.Google Scholar
  9. Carlson, D.A., Roan, C.-S., Yost, R.A., andHector, J., 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry.Anal. Chem. 61:1564–1571.Google Scholar
  10. Cavill, G.W.K., Clark, D.V., Howden, M.E.H., andWyllie, S.G. 1970. Hydrocarbon and other lipid constituents of the bull antMyrmecia gulosa.J. Insect Physiol. 16:1721–1728.Google Scholar
  11. Clark, J. 1951.The Formicidae of Australia. I. Subfamily Myrmeciinae, CSIRO, Melbourne, p. 18.Google Scholar
  12. Dunkelblum, E., Tan, S.H., andSilk, P.J. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four lepidoptera.J. Chem. Ecol. 11:265–277.Google Scholar
  13. Lange, C., Basselier, J.-J., Bagneres, A.-G., Escoubas, P., Lemaire, M., Lenoir, A., Clement, J.-L., Bonavita-Cougourdan, A., Trabalon, M., andCampan, M. 1989. Strategy for the analysis of cuticular hydrocarbon waxes using gas chromatography/mass spectrometry with electron impact and chemical ionization.Biomed. Environ. Mass Spectrom. 18:787–800.Google Scholar
  14. Lanne, B.S., Bergstöm, G., andLöfqvist, J. 1988. Dufour gland alkenes from the four ant speciesF. polyctena, F. lugubris, F. truncorum andF. uralensis.Comp. Biochem. Physiol. 91B:729–734.Google Scholar
  15. Levsen, K. 1975. Isomerisation of hydrocarbon ions: II-octenes and isomeric cycloalkanes: A collisional activation study.Org. Mass Spectrom. 10:55–63.Google Scholar
  16. Lockey, K.H. 1988. Lipids of the insect cuticle: Origin, composition and function.Comp. Biochem. Physiol. 89B: 595–645.Google Scholar
  17. Lok, J.B., Cupp, E.W., andBlomquist, G.J. 1975. Cuticular lipids of the imported fire ants,Solenopsis invicta andRichteri.Insect Biochem. 5:821–829.Google Scholar
  18. Martin, M.M., andMacConnell, J.G. 1970. The alkenes of the ant,Atta colombica.Tetrahedron 26:307–319.Google Scholar
  19. Mintzer, A.C., Williams, H.J., andVinson, S.B. 1987. Identity and variation of hexane soluble cuticular components produced by the acacia antPseudomyrmex ferruginea.Comp. Biochem. Physiol. 86B:27–3O.Google Scholar
  20. Nelson, D.R., Fatland, C.L., Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1980. Re-analysis of the cuticular methylalkanes ofSolenopsis invicta andS. richten.Insect Biochem. 10:409–418.Google Scholar
  21. Sheppard, P., andvan Bronswijk, W. 1987. DAPA Scientific Software. PO Box 58, Kalamunda, Western Australia 6076.Google Scholar
  22. Sonnet, P.E., Uebel, E.C., Lusby, W.R., Schwarz, M., andMiller, R.W. 1979. Sex pheromone of the stable fly. Identification, synthesis, and evaluation of alkenes from female stable flies.J. Chem. Ecol. 5:353–361.Google Scholar
  23. Taylor, R.W. 1978.Nothomyrmecia macrops: A living-fossil ant rediscovered.Science 201:979–985.Google Scholar
  24. Warthen, J.D., andUebel, E.C. 1980. A flavonol glucoside fromTypha latifolia.Insect Biochem. 10:435–439.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • W. Vance Brown
    • 1
  • Pierre Jaisson
    • 2
  • Robert W. Taylor
    • 1
  • Michael J. Lacey
    • 1
  1. 1.Division of EntomologyCSIROCanberraAustralia
  2. 2.Laboratoire d'Ethologie et Sociobiologie U.A. Centre de la Recherche Scientifique No 667Université Paris NordVilletaneuseFrance

Personalised recommendations