Journal of Chemical Ecology

, Volume 17, Issue 11, pp 2235–2251 | Cite as

Isolation and identification of allelochemicals that attract the larval parasitoid,Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts

  • Ted C. J. Turlings
  • James H. Tumlinson
  • Robert R. Heath
  • Adron T. Proveaux
  • Robert E. Doolittle


Volatiles released from corn seedlings on which beet armyworm larvae were feeding were attractive to females of the parasitoid,Cotesia marginiventris (Cresson), in flight tunnel bioassays. Analyses of the collected volatiles revealed the consistent presence of 11 compounds in significant amounts. They were: (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)- 3-hexen-1-yl acetate, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, indole, α-trans-bergamotene, (E)-β-farnesene, (E)-nerolidol, and (3E,7E)-4,8,12-trimethyl-1, 3,7,ll-tridecatetraene. A synthetic blend of all 11 compounds was slightly less attractive to parasitoid females than an equivalent natural blend. However, preflight experience with the synthetic blend instead of experience with a regular plant-host complex significantly improved the response to the synthetic blend. Our results suggest thatC. marginiventris females, in their search for hosts, use a blend of airborne semiochemicals emitted by plants on which their hosts feed. The response to a particular odor blend dramatically increases after a parasitoid experiences it in association with contacting host by-products.

Key Words

Hymenoptera Braconidae Cotesia marginiventris corn parasitoid host searching semiochemicals synomones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alphen, J.J.M. Van, andVet, L.E.M. 1986. An evolutionary approach to host finding and selection, pp. 23–61,in J.K. Waage, and D.J. Greathead (eds.). Insect Parasitoids. Academic Press, London.Google Scholar
  2. Bestmann, H.-J., Classen, B., Kobold, U., Vostrowsky, O., Klingauf, F., andStein, U. 1988. Steam volatile constituents from leaves ofRhus typhina.Phytochemistry 27:85–90.Google Scholar
  3. Bowers, W.S., Nault, L.R., Webb, R.E., andDutky, S.R. 1972. Aphid alarm pheromone: Isolation, identification, synthesis.Science 177:1121–1122.Google Scholar
  4. Brownlee, R.G., andSilverstein, R.M. 1968. A micro-preparative gas Chromatograph and a modified carbon skeleton determinator.Anal. Chem. 40:2077–2079.Google Scholar
  5. Buttery, R.G., andLing, L.C. 1984. Corn leaf volatiles: Identification using tenax trapping for possible insect attractants.J. Agric. Food Chem. 32:1104–1106.Google Scholar
  6. Buttery, R.G., Teranishi, R., andLing, L.C. 1987. Fresh tomato aroma volatiles: A quantitative study.J. Agric. Food Chem. 35:540–544.Google Scholar
  7. Corey, E.J., Cane, D.E., andLibit, L. 1971. The synthesis of racemicα-trans- andβ-transbergamotene.J. Am. Chem. Soc. 93:7016–7021.Google Scholar
  8. Dicke, M., andSabelis, M.W. 1988. How plants obtain predatory mites as bodyguards.Neth. J. Zool. 38:148–165.Google Scholar
  9. Dicke, M., Van Beek, T.A., Posthumus, M.A., Ben Dom, N., Van Bokhoven, H., andDe Groot, E. 1990a. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production.J. Chem. Ecol. 16:381–396.Google Scholar
  10. Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J., andPosthumus, M.A. 1990b. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control.J. Chem. Ecol. 16:3091–3118.Google Scholar
  11. Dmoch, J., Lewis, W.J., Martin, P.B., andNordlund, D.A. 1985. Role of the host-produced stimuli and learning in host selection behavior ofCotesia (Apanteles) marginiventris (Cresson).J. Chem. Ecol. 11:453–463.Google Scholar
  12. Doskotch, R.W., Chenc, H.-Y., Odell, T.M., andGirard, L. 1980. Nerolidol: An antifeeding sesquiterpene alcohol for gypsy moth larvae fromMelaleuca leucadendron.J. Chem. Ecol. 6:845–851.Google Scholar
  13. Edwards, L.J., Siddail, J.B., Dunham, L.L., Uden, P., andKislow, C.J. 1973.trans-β-Far- nesene alarm pheromone of the green peach aphid,Myzus persicae Sulzer.Nature 241:126–127.PubMedGoogle Scholar
  14. Eller, F.J. 1990. Foraging behavior ofMicroplitis croceipes, a parasitoid ofHeliothis species. PhD dissertation. University of Florida, Gainesville. 221 pp.Google Scholar
  15. Grob, K., Jr. 1982. Partial solvent trapping in capillary gas chromatography. Description of a solvent effect.J. Chromatogr. 251:235–248.Google Scholar
  16. Gunasena, G.H., Vinson, S.B., Williams, H.J., andStipanovic, R.D. 1988. Effects of caryophyllene, caryophyllene oxide, and their interaction with gossypol on the growth and developmentof Heliothis virescens (F.) (Lepidoptera: Noctuidae).J. Econ. Entomol. 81:93–97.Google Scholar
  17. Jones, T.G.H., andHarvey, J.M. 1936. Essential oils from the Queensland flora. Part VIII. The identity of melaleucol with nerolidol.Proc. R. Soc. Queensl. 47:92–93.Google Scholar
  18. Kaiser, R. 1987. Night-scented flowers, not only attractive to moths. Abstracts EUCHEM conference: Semiochemicals in the Plant and Animal Kingdoms. October 12–16, 1987, Angers, France.Google Scholar
  19. Kamm, J.A., andButtery, R.G. 1983. Response of the alfalfa seed chalcid,Bmchophagus roddi, to alfalfa volatiles.Entomol. Exp. Appl. 23:129–134.Google Scholar
  20. King, E.G., andLeppla, N.C. 1984. Advances and Challenges in Insect Rearing. Agricultural Research Service, USDA, U.S. Government Printing Office, Washington, D.C.Google Scholar
  21. Kovats, E. 1965. Retention index system.Adv. Chromatogr. 1:229–234.Google Scholar
  22. Lewis, W.J., andNordlund, D.A. 1985. Behavior-modifying chemicals to enhance natural enemy effectiveness, pp. 89–101,in M.A. Hoy, and D.C. Herzog (eds.). Biological Control in Agricultural IPM Systems. Academic Press, New York.Google Scholar
  23. Lewis, W.J., andTumlinson, J.H. 1988. Host detection by chemically mediated associative learning in a parasitic wasp.Nature 331:257–259.Google Scholar
  24. Loke, W.H., andAshley, T.R. 1984a. Behavioral and biological responses ofCotesia marginiventris to kairomones of the fall armyworm,Spodoptera frugiperda.J. Chem. Ecol. 10:521–529.Google Scholar
  25. Loke, W.H., andAshley, T.R. 1984b. Sources of fall armyworm,Spodoptera frugiperda (Lepidoptera: Noctuidae), kairomones eliciting host-finding behavior inCotesia (Apanteles) Marginiventris (Hymenoptera: Braconidae).J. Chem. Ecol. 10:1019–1027.Google Scholar
  26. Loke, W.H., andAshley, T.R. 1984c. Potential uses of kairomones for behavioral manipulationof Cotesia marginiventris (Cresson).J. Chem. Ecol. 10:1377–1384.Google Scholar
  27. Loke, W.H., Ashley, T.R., andSailer, R.I. 1983. Influence of fall armyworm.Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and corn plant damage on host finding inApanteles marginiventris (Hymenoptera: Braconidae).Environ. Entomol. 12:911–915.Google Scholar
  28. Maurer, B., Hauser, A., andFroidevaux, J.C. 1986. (E)-4,8-Dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, two unusual hydrocarbons from cardamom, oil.Tetrahedron Lett. 27:2111–2112.Google Scholar
  29. McCutcheon, O.S., andTurnipseed, S.G. 1981. Parasites of Lepidopterous larvae in insect resistant and susceptible soybeans in South Carolina.Environ. Entomol. 10:69–74.Google Scholar
  30. Mihaliar, C.A., Couvet, D., andLincoln, D.E. 1987. Inhibition of feeding by a generalist insect due to increased volatile leaf terpenes under nitrate-limiting conditions.J. Chem. Ecol. 13:2059–2067.Google Scholar
  31. Minyard, J.P., Tumlinson, J.H., Thompson, A.C., andHedin, P.A. 1966. Constituents of the cotton bud. Sesquiterpene hydrocarbons.J. Agr. Food Chem. 14:332–336.Google Scholar
  32. Naves, Y.R. 1960. On the presence of geraniol, nerol, linalool, farnesols, and nerolidols in essential oils.C.R. Acad. Sci. Ser. C 251:900–902.Google Scholar
  33. Pair, S.D., Laster, M.L., andMartin, D.F. 1982. Parasitoids ofHeliothis spp. (Lepidoptera: Noctuidae) larvae in Mississippi associated with sesame interplantings in cotton, 1971–1974: Implications of host-habitat interaction.Environ. Entomol. 11:509–512.Google Scholar
  34. Picker, K., Ritchie, E., andTaylor, W.C. 1976. The chemical constituents of AustralianFlindersia species. XXI. An examination of the bark and the leaves ofF. laevicarpa.Aust. J. Chem. 29: 2023–2026.Google Scholar
  35. Stenhagen, E., Abrahamsson, S., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data. Wiley, New York. 1257 pp.Google Scholar
  36. Thompson, A.C., Hedin, P.A., andGueldner, R.C. 1974. Corn bud essential oil.Phytochemistry 13:2029–2032.Google Scholar
  37. Tingle, F.C., Ashley, T.R., andMitchell, E.R. 1978. Parasites ofSpodoptera exigua, S. eridania (Lep.: Noctuidae) andHerpetogramma bipunctalis (Lep.: Pyralidae) collected fromAmaranthus hybridus in field corn.Entomophaga 23:343–347.Google Scholar
  38. Tollsten, L., andBergström, G. 1988. Headspace volatiles of whole plants and macerated plant parts ofBrassica andSinapis.Phytochemistry 27:4013–4018.Google Scholar
  39. Turlings, T.C.J., andTumlinson, J.H. 1991. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts?Fla. Entomol. 74:42–50.Google Scholar
  40. Turlings, T.C.J., Tumlinson, J.H., Lewis, W.J., andVet, L.E.M. 1989. Beneficial arthropod behavior mediated by airborne semiochemicals. VII. Learning of host-related odors induced by a brief contact experience with host by-products inCotesia marginiventris (Cresson), a generalist larval parasitoid.J. Insect Behav. 2:217–225.Google Scholar
  41. Turlings, T.C.J., Scheepmaker, J.W.A., Vet, L.E.M., Tumlinson, J.H., andSclewis, Wj. 1990a. How contact foraging experiences affect the preferences for host-related odors in the larval parasitoidCotesia marginiventris (Cresson) (Hymenoptera: Braconidae).J. Chem. Ecol. 16:1577–1589.Google Scholar
  42. Turlings, T.C.J., Tumlinson, J.H., andLewis, W.J. 1990b. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps.Science 250: 1251–1253.Google Scholar
  43. Turlings, T.C.J., Tumlinson, J.H., Eller, F.J., andLewis, W.J. 1991. Larval-damaged plants: Source of volatile synomones that guide the parasitoidCotesia marginiventris to the microhabitat of its hosts.Entomol. Exp. Appl. 58:75–82.Google Scholar
  44. Vet, L.E.M., andGroenewold, A.W. 1990. Semiochemicals and learning in parasitoids.J. Chem. Ecol. 16:3119–3135.Google Scholar
  45. Vinson, S.B. 1981. Habitat location, pp. 51–77,in D.A. Nordlund, R.L. Jones, andW.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley & Sons, New York.Google Scholar
  46. Visser, J.H., Van Straten, S., andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:13–25.Google Scholar
  47. Weseloh, R.M. 1981. Host location by parasitoids, pp. 79–95,in D.A. Nordlund, R.L. Jones, and W.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley & Sons, New York.Google Scholar
  48. Wohlers, P. 1981. Effects of the alarm pheromone (E)-β-farnesene on dispersal behavior of the pea aphidAcyrthosiphon pisum.Entomol. Exp. Appl. 9:117–124.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ted C. J. Turlings
    • 1
  • James H. Tumlinson
    • 1
  • Robert R. Heath
    • 1
  • Adron T. Proveaux
    • 1
  • Robert E. Doolittle
    • 1
  1. 1.U.S. Department of AgricultureInsect Attractants, Behavior, and Basic Biology Research Laboratory, Agricultural Research ServiceGainesville

Personalised recommendations