Plant Systematics and Evolution

, Volume 206, Issue 1–4, pp 393–410

Chloroplastrps16 intron phylogeny of the tribeSileneae (Caryophyllaceae)

  • Bengt Oxelman
  • Magnus Lidén
  • Daniel Berglund
Article

Abstract

Intron sequences of the chloroplast generps16 from 46 species were used to examine phylogenetic relationships indicated by nrDNA ITS sequence variation in the tribeSileneae (Caryophyllaceae, Caryophylloideae). This region has previously not been utilized for phylogenetic purposes but the results presented here suggest that it is a consistent and valuable complement to the ITS sequences. Therps16 intron trees are largely congruent with the ITS trees. All the major hypotheses suggested by the ITS data are supported, often at similar bootstrap levels. The joint usage ofrps16 intron and ITS sequences provides a powerful tool for resolving many of the difficult taxonomic issues in the tribeSileneae.

Key words

Caryophyllaceae Sileneae Silene Lychnis Cucubalus Petrocoptis Agrostemma Eudianthe Melandrium rps16 intron sequences multiple sequence alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., Donoghue, M. J., 1995: The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. — Ann. Missouri Bot. Gard.82: 247–277.Google Scholar
  2. Böhle, U.-R., Hilger, H., Cerff, R., Martin, W. F., 1994: Non-coding chloroplast DNA for plant molecular systematics at the infrageneric level. — InSchierwater, B., Streit, B., Wagner, G. P., DeSalle, R., (Eds): Molecular ecology and evolution: approaches and applications, pp. 391–402. — Basel: Birkhäuser.Google Scholar
  3. Bremer, K., 1988: The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. — Evolution42: 795–803.Google Scholar
  4. Chowdhuri, P. K., 1957: Studies in the genusSilene. — Notes Roy. Bot. Gard. Edinburgh22: 221–278.Google Scholar
  5. Downie, S. R., Palmer, J. D., 1992: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. — InSoltis, P. S., Soltis, D. E., Doyle, J. E., (Eds): Molecular systematics of plants, pp. 14–35. — New York: Chapman & Hall.Google Scholar
  6. —, 1996: Phylogenetic analysis ofApiaceae subfamilyApioideae using nucleotide sequences from the chloroplastrpoCl intron. — Molec. Phylogenet. Evol.6: 1–18.PubMedGoogle Scholar
  7. Doyle, J. J., 1992: Gene trees and species trees: molecular systematics as one-character taxonomy. — Syst. Bot.17: 144–163.Google Scholar
  8. —, 1995: Multiple independent losses of two genes and one intron from legume chloroplast genomes. — Syst. Bot.20: 272–294.Google Scholar
  9. Ehrendorfer, F., Manén, J.-F., Natali, A., 1994: cpDNA intergene sequences corroborate restriction site data for reconstructingRubiaceae phylogeny. — Pl. Syst. Evol.190: 245–258.Google Scholar
  10. Eriksson, T., Wikström, N., 1995: AutoDecay. Version 3.03. — Stockholm: Stockholms Universitet (distributed by the authors).Google Scholar
  11. Farris, J. S., 1989: The retention index and the rescaled consistency index. — Cladistics5: 417–419.Google Scholar
  12. Felsenstein, J., 1978: Cases in which parsimony and compatibility methods will be positively misleading. — Syst. Zool.27: 401–410.Google Scholar
  13. Gielly, L., Taberlet, P., 1994: The use of chloroplast DNA to resolve plant phylogenies: noncoding versusrbcL sequences. — Molec. Biol. Evol.11: 769–777.PubMedGoogle Scholar
  14. —, 1996: Phylogenetic use of noncoding regions in the genusGentiana L.: chloroplasttrnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. — Molec. Phylogenet. Evol.5: 460–466.PubMedGoogle Scholar
  15. Golenberg, E. M., Clegg, M. T., Durbin, M. L., Doebley, J., Ma, D. P., 1993: Evolution of a noncoding region of the chloroplast genome. — Molec. Phylogenet. Evol.2: 52–64.PubMedGoogle Scholar
  16. Greuter, W., 1995:Silene (Caryophyllaceae) in Greece: a subgeneric and sectional classification. — Taxon44: 543–581.Google Scholar
  17. Harshman, J., 1994: The effect of irrelevant characters to bootstrap values. — Syst. Biol.43: 419–424.Google Scholar
  18. Holmgren, K. P., Holmgren, H. N., Barnett, L. C., 1990: Index Herbariorum 1: The herbaria of the world, 8th edn. — Regnum Veg.120.Google Scholar
  19. Hoot, S., Culham, A., Crane, P. R., 1995: The utility ofatpB gene sequences in resolving phylogenetic relationships: comparison withrbcL and 18S ribosomal DNA sequences in theLardizabalaceae. — Ann. Missouri Bot. Gard.82: 194–207.Google Scholar
  20. Johnson, L. A., Soltis, D. E., 1995: Phylogenetic inference inSaxifragaceae sensu stricto andGilia (Polemoniaceae) usingmatK sequences. — Ann. Missouri Bot. Gard.82: 149–175.Google Scholar
  21. Jordan, W. C., Courtney, M. W., Neigel, J. E., 1996: Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). — Amer. J. Bot.83: 430–439.Google Scholar
  22. Lidén, M., Fukuhara, T., Rylander, J., Oxelman, B., 1997: The phylogeny and classification ofFumariaceae with emphasis onDicentra sensu lato based on the chloroplast generps16 intron. — Pl. Syst. Evol.206: 411–420.Google Scholar
  23. Maddison, W. P., Maddison, D. R., 1992: MacClade: analysis of phylogeny and character evolution. Version 3.05 — Sunderland, Mass.: Sinauer.Google Scholar
  24. Nagano, Y., Matsuno, R., Sasaki, Y., 1991: Sequence and transcriptional analysis of the gene clustertrnQ-zfpA-psaI-ORF231-petA in pea chloroplasts. — Curr. Genet.20: 431–436.PubMedGoogle Scholar
  25. Neuhaus, H., Scholz, A., Link, G., 1989: Structure and organisation of a split chloroplast gene from mustard (Sinapis alba): ribosomal protein generps16 reveals unusual transcriptional features and complex RNA maturation. — Curr. Genet.15: 63–70.PubMedGoogle Scholar
  26. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., Ozeki, H., 1986: Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. — Nature322: 572–574.Google Scholar
  27. Olmstead, R. G., Reeves, P. A., 1995: Evidence for the polyphyly of theScrophulariaceae based on chloroplastrbcL andndsF sequences. — Ann. Missouri Bot. Gard.82: 176–193.Google Scholar
  28. Oxelman, B., 1995: Systematic studies in the genusSilene L. (Caryophyllaceae) — morphological and molecular approaches. — Ph.D. thesis, Västra Frölunda: Göteborgs Universitet.Google Scholar
  29. —, 1996: LongRangerTM gels versus standard polyacrylamide gels on ALFExpressTM automated sequencers. — FMC Resolutions12(2): 2–4.Google Scholar
  30. —, 1995: Generic boundaries in the tribeSileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. — Taxon44: 525–542.Google Scholar
  31. Pamilo, P., Nei, M., 1991: Relationships between gene trees and species trees. — Molec. Biol. Evol.5: 568–583.Google Scholar
  32. Rieseberg, L. H., Soltis, D. E., 1991: Phylogenetic consequences of cytoplasmic gene flow in plants. — Evol. Trends Pl.5: 65–84.Google Scholar
  33. Rohrbach, P., 1869: Monographie der GattungSilene. — Leipzig: Engelmann.Google Scholar
  34. Sexton, D., Jones, J. T., Mullet, J. E., 1990: Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). — Curr. Genet.17: 445–454.PubMedGoogle Scholar
  35. Sheen, J.-Y., Seed, B., 1988: Electrolyte gradient gels for DNA sequencing. — Bio/Techniques6: 942–943.Google Scholar
  36. Soltis, D. E., Soltis, P. S., Milligan, B. G., 1992: Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. — InSoltis, P. S., Soltis, D. E., Doyle, J. E., (Eds): Molecular systematics of plants, pp. 117–150. — New York: Chapman & Hall.Google Scholar
  37. Soltis, P. S., Soltis, D. E., 1995: Alternative genes for phylogenetic reconstruction in plants: introduction. — Ann. Missouri Bot. Gard.82: 147–148.Google Scholar
  38. Swofford, D., 1993: PAUP: phylogenetic analysis using parsimony. — Champaign: Illinois Natural History Survey.Google Scholar
  39. Talavera, S., 1979: Revision de la sect.Erectorefractae del generoSilene L. — Lagascalia8: 135–164.Google Scholar
  40. Thein, S. L., 1990: A simplified method of direct sequencing of PCR amplified DNA with Sequenase*T7 DNA polymerase. — USB Comments17: 26–27.Google Scholar
  41. Tzudsuki, J., Nakashima, K., Tzudsuki, T., Hiratsuka, J., Shibata, M., Wakasugi, T., Sugiura, M., 1992: Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences oftrnQ,trnK,psbA,trnI, andtrnH and the absence ofrps16. — Molec. Gen. Genet.232: 206–214.PubMedGoogle Scholar
  42. Wendel, J. F., Schnabel, A., Seelanan, T., 1995: Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). — Proc. Natl. Acad. Sci. USA92: 280–284.PubMedGoogle Scholar
  43. Wolfe, K. H., Morden, C. W., Palmer, J. D., 1992: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. — Proc. Natl. Acad. Sci. USA89: 10648–10652.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Bengt Oxelman
    • 1
  • Magnus Lidén
    • 1
  • Daniel Berglund
    • 1
  1. 1.Department of Systematic BotanyGöteborgSweden

Personalised recommendations